Properties

Label 5280.d.84480.1
Conductor $5280$
Discriminant $-84480$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + xy = 24x^6 + 95x^4 + 125x^2 + 55$ (homogenize, simplify)
$y^2 + xz^2y = 24x^6 + 95x^4z^2 + 125x^2z^4 + 55z^6$ (dehomogenize, simplify)
$y^2 = 96x^6 + 380x^4 + 501x^2 + 220$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([55, 0, 125, 0, 95, 0, 24]), R([0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![55, 0, 125, 0, 95, 0, 24], R![0, 1]);
 
sage: X = HyperellipticCurve(R([220, 0, 501, 0, 380, 0, 96]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(5280\) \(=\) \( 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-84480\) \(=\) \( - 2^{9} \cdot 3 \cdot 5 \cdot 11 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1014360\) \(=\)  \( 2^{3} \cdot 3 \cdot 5 \cdot 79 \cdot 107 \)
\( I_4 \)  \(=\) \(22497\) \(=\)  \( 3 \cdot 7499 \)
\( I_6 \)  \(=\) \(7606321185\) \(=\)  \( 3 \cdot 5 \cdot 507088079 \)
\( I_{10} \)  \(=\) \(10560\) \(=\)  \( 2^{6} \cdot 3 \cdot 5 \cdot 11 \)
\( J_2 \)  \(=\) \(1014360\) \(=\)  \( 2^{3} \cdot 3 \cdot 5 \cdot 79 \cdot 107 \)
\( J_4 \)  \(=\) \(42871910402\) \(=\)  \( 2 \cdot 29 \cdot 467 \cdot 1063 \cdot 1489 \)
\( J_6 \)  \(=\) \(2415973367470080\) \(=\)  \( 2^{11} \cdot 3 \cdot 5 \cdot 11 \cdot 103 \cdot 5813 \cdot 11941 \)
\( J_8 \)  \(=\) \(153166510877458636799\) \(=\)  \( 153166510877458636799 \)
\( J_{10} \)  \(=\) \(84480\) \(=\)  \( 2^{9} \cdot 3 \cdot 5 \cdot 11 \)
\( g_1 \)  \(=\) \(139829677203278295877320000/11\)
\( g_2 \)  \(=\) \(5826234511928725040734650/11\)
\( g_3 \)  \(=\) \(29425406243910243321600\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 + 4z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)
\(D_0 - D_\infty\) \(8x^2 + 11z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 + 4z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)
\(D_0 - D_\infty\) \(8x^2 + 11z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 + 4z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)
\(D_0 - D_\infty\) \(8x^2 + 11z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)

2-torsion field: 8.0.48575324160000.293

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(4\)
Regulator: \( 1 \)
Real period: \( 4.119112 \)
Tamagawa product: \( 1 \)
Torsion order:\( 4 \)
Leading coefficient: \( 1.029778 \)
Analytic order of Ш: \( 4 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(5\) \(9\) \(1\) \(1 - T + 2 T^{2}\)
\(3\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 3 T^{2} )\)
\(5\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 2 T + 5 T^{2} )\)
\(11\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 4 T + 11 T^{2} )\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.90.6 yes
\(3\) 3.90.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 55.a
  Elliptic curve isogeny class 96.a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);