# Properties

 Label 5200.b.332800.1 Conductor 5200 Discriminant 332800 Mordell-Weil group $$\Z/{13}\Z$$ Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

Show commands for: SageMath / Magma

## Simplified equation

 $y^2 + (x + 1)y = x^6 + 2x^5 + 2x^4 - x^2$ (homogenize, simplify) $y^2 + (xz^2 + z^3)y = x^6 + 2x^5z + 2x^4z^2 - x^2z^4$ (dehomogenize, simplify) $y^2 = 4x^6 + 8x^5 + 8x^4 - 3x^2 + 2x + 1$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -1, 0, 2, 2, 1]), R([1, 1]));

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -1, 0, 2, 2, 1], R![1, 1]);

sage: X = HyperellipticCurve(R([1, 2, -3, 0, 8, 8, 4]))

magma: X,pi:= SimplifiedModel(C);

## Invariants

 Conductor: $$N$$ $$=$$ $$5200$$ $$=$$ $$2^{4} \cdot 5^{2} \cdot 13$$ magma: Conductor(LSeries(C)); Factorization($1); Discriminant: $$\Delta$$ $$=$$ $$332800$$ $$=$$ $$2^{10} \cdot 5^{2} \cdot 13$$ magma: Discriminant(C); Factorization(Integers()!$1);

### G2 invariants

 $$I_2$$ $$=$$ $$64$$ $$=$$ $$2^{6}$$ $$I_4$$ $$=$$ $$20224$$ $$=$$ $$2^{8} \cdot 79$$ $$I_6$$ $$=$$ $$-5489664$$ $$=$$ $$- 2^{10} \cdot 3 \cdot 1787$$ $$I_{10}$$ $$=$$ $$1363148800$$ $$=$$ $$2^{22} \cdot 5^{2} \cdot 13$$ $$J_2$$ $$=$$ $$8$$ $$=$$ $$2^{3}$$ $$J_4$$ $$=$$ $$-208$$ $$=$$ $$- 2^{4} \cdot 13$$ $$J_6$$ $$=$$ $$10000$$ $$=$$ $$2^{4} \cdot 5^{4}$$ $$J_8$$ $$=$$ $$9184$$ $$=$$ $$2^{5} \cdot 7 \cdot 41$$ $$J_{10}$$ $$=$$ $$332800$$ $$=$$ $$2^{10} \cdot 5^{2} \cdot 13$$ $$g_1$$ $$=$$ $$32/325$$ $$g_2$$ $$=$$ $$-8/25$$ $$g_3$$ $$=$$ $$25/13$$

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);

## Automorphism group

 $$\mathrm{Aut}(X)$$ $$\simeq$$ $C_2$ magma: AutomorphismGroup(C); IdentifyGroup($1); $$\mathrm{Aut}(X_{\overline{\Q}})$$ $$\simeq$$$C_2$magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);

## Rational points

All points: $$(1 : -1 : 0),\, (1 : 1 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1),\, (0 : -1 : 1)$$

magma: [C![-1,0,1],C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,1,0]];

Number of rational Weierstrass points: $$1$$

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

## Mordell-Weil group of the Jacobian

Group structure: $$\Z/{13}\Z$$

magma: MordellWeilGroupGenus2(Jacobian(C));

Generator $D_0$ Height Order
$$(-1 : 0 : 1) - (1 : -1 : 0)$$ $$z (x + z)$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$x^3 + z^3$$ $$0$$ $$13$$

## BSD invariants

 Hasse-Weil conjecture: unverified Analytic rank: $$0$$ Mordell-Weil rank: $$0$$ 2-Selmer rank: $$0$$ Regulator: $$1$$ Real period: $$13.48641$$ Tamagawa product: $$13$$ Torsion order: $$13$$ Leading coefficient: $$1.037416$$ Analytic order of Ш: $$1$$   (rounded) Order of Ш: square

## Local invariants

Prime ord($$N$$) ord($$\Delta$$) Tamagawa L-factor Cluster picture
$$2$$ $$4$$ $$10$$ $$13$$ $$1 - T$$
$$5$$ $$2$$ $$2$$ $$1$$ $$1 + T^{2}$$
$$13$$ $$1$$ $$1$$ $$1$$ $$( 1 - T )( 1 - T + 13 T^{2} )$$

## Sato-Tate group

 $$\mathrm{ST}$$ $$\simeq$$ $\mathrm{USp}(4)$ $$\mathrm{ST}^0$$ $$\simeq$$ $$\mathrm{USp}(4)$$

## Decomposition of the Jacobian

Simple over $$\overline{\Q}$$

## Endomorphisms of the Jacobian

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism ring over $$\Q$$:

 $$\End (J_{})$$ $$\simeq$$ $$\Z$$ $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.