Properties

Label 51035.a.255175.1
Conductor $51035$
Discriminant $-255175$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = -3x^4 + 5x^2 + 2x$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = -3x^4z^2 + 5x^2z^4 + 2xz^5$ (dehomogenize, simplify)
$y^2 = x^6 - 10x^4 + 2x^3 + 21x^2 + 10x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 2, 5, 0, -3]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 2, 5, 0, -3], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 10, 21, 2, -10, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(51035\) \(=\) \( 5 \cdot 59 \cdot 173 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-255175\) \(=\) \( - 5^{2} \cdot 59 \cdot 173 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1572\) \(=\)  \( 2^{2} \cdot 3 \cdot 131 \)
\( I_4 \)  \(=\) \(70521\) \(=\)  \( 3 \cdot 11 \cdot 2137 \)
\( I_6 \)  \(=\) \(31551645\) \(=\)  \( 3 \cdot 5 \cdot 31 \cdot 67853 \)
\( I_{10} \)  \(=\) \(-32662400\) \(=\)  \( - 2^{7} \cdot 5^{2} \cdot 59 \cdot 173 \)
\( J_2 \)  \(=\) \(393\) \(=\)  \( 3 \cdot 131 \)
\( J_4 \)  \(=\) \(3497\) \(=\)  \( 13 \cdot 269 \)
\( J_6 \)  \(=\) \(23061\) \(=\)  \( 3 \cdot 7687 \)
\( J_8 \)  \(=\) \(-791509\) \(=\)  \( - 547 \cdot 1447 \)
\( J_{10} \)  \(=\) \(-255175\) \(=\)  \( - 5^{2} \cdot 59 \cdot 173 \)
\( g_1 \)  \(=\) \(-9374815985193/255175\)
\( g_2 \)  \(=\) \(-212262504129/255175\)
\( g_3 \)  \(=\) \(-3561748389/255175\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : 1 : 1)\) \((-1 : 1 : 2)\) \((2 : -3 : 1)\) \((1 : -4 : 1)\) \((-1 : -4 : 2)\) \((2 : -8 : 1)\)
\((-3 : 12 : 1)\) \((5 : -15 : 1)\) \((-3 : 17 : 1)\) \((2 : 27 : 3)\) \((2 : -80 : 3)\) \((5 : -116 : 1)\)
\((7 : 17072 : 36)\) \((7 : -73143 : 36)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : 1 : 1)\) \((-1 : 1 : 2)\) \((2 : -3 : 1)\) \((1 : -4 : 1)\) \((-1 : -4 : 2)\) \((2 : -8 : 1)\)
\((-3 : 12 : 1)\) \((5 : -15 : 1)\) \((-3 : 17 : 1)\) \((2 : 27 : 3)\) \((2 : -80 : 3)\) \((5 : -116 : 1)\)
\((7 : 17072 : 36)\) \((7 : -73143 : 36)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -5 : 1)\) \((1 : 5 : 1)\) \((-1 : -5 : 2)\) \((-1 : 5 : 2)\) \((2 : -5 : 1)\) \((2 : 5 : 1)\)
\((-3 : -5 : 1)\) \((-3 : 5 : 1)\) \((5 : -101 : 1)\) \((5 : 101 : 1)\) \((2 : -107 : 3)\) \((2 : 107 : 3)\)
\((7 : -90215 : 36)\) \((7 : 90215 : 36)\)

magma: [C![-3,12,1],C![-3,17,1],C![-1,-4,2],C![-1,0,1],C![-1,1,1],C![-1,1,2],C![0,-1,1],C![0,0,1],C![1,-4,1],C![1,-1,0],C![1,0,0],C![1,1,1],C![2,-80,3],C![2,-8,1],C![2,-3,1],C![2,27,3],C![5,-116,1],C![5,-15,1],C![7,-73143,36],C![7,17072,36]]; // minimal model
 
magma: [C![-3,-5,1],C![-3,5,1],C![-1,-5,2],C![-1,-1,1],C![-1,1,1],C![-1,5,2],C![0,-1,1],C![0,1,1],C![1,-5,1],C![1,-1,0],C![1,1,0],C![1,5,1],C![2,-107,3],C![2,-5,1],C![2,5,1],C![2,107,3],C![5,-101,1],C![5,101,1],C![7,-90215,36],C![7,90215,36]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 0 : 1) + (2 : -8 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-4xz^2\) \(0.507487\) \(\infty\)
\((-1 : 1 : 2) - (1 : 0 : 0)\) \(z (2x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.222465\) \(\infty\)
\((-1 : 0 : 1) + (2 : -3 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - 2z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0.159942\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 0 : 1) + (2 : -8 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-4xz^2\) \(0.507487\) \(\infty\)
\((-1 : 1 : 2) - (1 : 0 : 0)\) \(z (2x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.222465\) \(\infty\)
\((-1 : 0 : 1) + (2 : -3 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - 2z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0.159942\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 1 : 1) + (2 : -5 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 7xz^2 + z^3\) \(0.507487\) \(\infty\)
\((-1 : 5 : 2) - (1 : 1 : 0)\) \(z (2x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + xz^2 + z^3\) \(0.222465\) \(\infty\)
\((-1 : -1 : 1) + (2 : 5 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - 2z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - xz^2 - z^3\) \(0.159942\) \(\infty\)

2-torsion field: 6.4.653248.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.014614 \)
Real period: \( 18.56390 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.542622 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(5\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + T + 5 T^{2} )\)
\(59\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 14 T + 59 T^{2} )\)
\(173\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 2 T + 173 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);