Properties

Label 5026.a.35182.1
Conductor 5026
Discriminant 35182
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 5, 28, 46, 22, 4], R![1, 0, 0, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 5, 28, 46, 22, 4]), R([1, 0, 0, 1]))
 

$y^2 + (x^3 + 1)y = 4x^5 + 22x^4 + 46x^3 + 28x^2 + 5x$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
 
\( N \)  =  \( 5026 \)  =  \( 2 \cdot 7 \cdot 359 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 
\( \Delta \)  =  \(35182\)  =  \( 2 \cdot 7^{2} \cdot 359 \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
 

G2 invariants

magma: G2Invariants(C);
 

\( I_2 \)  =  \(62440\)  =  \( 2^{3} \cdot 5 \cdot 7 \cdot 223 \)
\( I_4 \)  =  \(1113316\)  =  \( 2^{2} \cdot 278329 \)
\( I_6 \)  =  \(22822085992\)  =  \( 2^{3} \cdot 2852760749 \)
\( I_{10} \)  =  \(144105472\)  =  \( 2^{13} \cdot 7^{2} \cdot 359 \)
\( J_2 \)  =  \(7805\)  =  \( 5 \cdot 7 \cdot 223 \)
\( J_4 \)  =  \(2526654\)  =  \( 2 \cdot 3 \cdot 13 \cdot 29 \cdot 1117 \)
\( J_6 \)  =  \(1086135208\)  =  \( 2^{3} \cdot 113 \cdot 491 \cdot 2447 \)
\( J_8 \)  =  \(523326215681\)  =  \( 41 \cdot 59 \cdot 2153 \cdot 100483 \)
\( J_{10} \)  =  \(35182\)  =  \( 2 \cdot 7^{2} \cdot 359 \)
\( g_1 \)  =  \(591110204777028125/718\)
\( g_2 \)  =  \(12258530733232875/359\)
\( g_3 \)  =  \(675155221982900/359\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

This curve is locally solvable everywhere.

magma: [C![-6,105,1],C![-6,110,1],C![-4,28,1],C![-4,35,1],C![-1,-7,2],C![-1,0,2],C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,0,0]];
 

Known rational points: (-6 : 105 : 1), (-6 : 110 : 1), (-4 : 28 : 1), (-4 : 35 : 1), (-1 : -7 : 2), (-1 : 0 : 2), (0 : -1 : 1), (0 : 0 : 1), (1 : -1 : 0), (1 : 0 : 0)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

Number of rational Weierstrass points: \(0\)

Invariants of the Jacobian:

Analytic rank*: \(2\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);
 

2-Selmer rank: \(3\)

magma: HasSquareSha(Jacobian(C));
 

Order of Ш*: square

Regulator: 0.031070196822

Real period: 18.252990652832424418331203288

Tamagawa numbers: 1 (p = 2), 2 (p = 7), 1 (p = 359)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);
 

Torsion: \(\Z/{2}\Z\)

2-torsion field: 6.6.263948288.1

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).