Properties

Label 49507.a.49507.1
Conductor $49507$
Discriminant $-49507$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = 2x^4 + 3x^3 + 3x^2 + x$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = 2x^4z^2 + 3x^3z^3 + 3x^2z^4 + xz^5$ (dehomogenize, simplify)
$y^2 = x^6 + 8x^4 + 14x^3 + 12x^2 + 4x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, 3, 3, 2]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, 3, 3, 2], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 4, 12, 14, 8, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(49507\) \(=\) \( 31 \cdot 1597 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-49507\) \(=\) \( - 31 \cdot 1597 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(300\) \(=\)  \( 2^{2} \cdot 3 \cdot 5^{2} \)
\( I_4 \)  \(=\) \(8889\) \(=\)  \( 3 \cdot 2963 \)
\( I_6 \)  \(=\) \(544659\) \(=\)  \( 3 \cdot 181553 \)
\( I_{10} \)  \(=\) \(6336896\) \(=\)  \( 2^{7} \cdot 31 \cdot 1597 \)
\( J_2 \)  \(=\) \(75\) \(=\)  \( 3 \cdot 5^{2} \)
\( J_4 \)  \(=\) \(-136\) \(=\)  \( - 2^{3} \cdot 17 \)
\( J_6 \)  \(=\) \(1128\) \(=\)  \( 2^{3} \cdot 3 \cdot 47 \)
\( J_8 \)  \(=\) \(16526\) \(=\)  \( 2 \cdot 8263 \)
\( J_{10} \)  \(=\) \(49507\) \(=\)  \( 31 \cdot 1597 \)
\( g_1 \)  \(=\) \(2373046875/49507\)
\( g_2 \)  \(=\) \(-57375000/49507\)
\( g_3 \)  \(=\) \(6345000/49507\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((-1 : 0 : 2)\) \((-2 : -2 : 1)\) \((2 : 5 : 1)\) \((-1 : -7 : 2)\) \((1 : 7 : 2)\) \((-2 : 9 : 1)\)
\((2 : -14 : 1)\) \((1 : -16 : 2)\) \((-12 : -21 : 1)\) \((-12 : 1748 : 1)\) \((9 : 20096 : 40)\) \((9 : -84825 : 40)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((-1 : 0 : 2)\) \((-2 : -2 : 1)\) \((2 : 5 : 1)\) \((-1 : -7 : 2)\) \((1 : 7 : 2)\) \((-2 : 9 : 1)\)
\((2 : -14 : 1)\) \((1 : -16 : 2)\) \((-12 : -21 : 1)\) \((-12 : 1748 : 1)\) \((9 : 20096 : 40)\) \((9 : -84825 : 40)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -2 : 1)\) \((-1 : 2 : 1)\)
\((-1 : -7 : 2)\) \((-1 : 7 : 2)\) \((-2 : -11 : 1)\) \((-2 : 11 : 1)\) \((2 : -19 : 1)\) \((2 : 19 : 1)\)
\((1 : -23 : 2)\) \((1 : 23 : 2)\) \((-12 : -1769 : 1)\) \((-12 : 1769 : 1)\) \((9 : -104921 : 40)\) \((9 : 104921 : 40)\)

magma: [C![-12,-21,1],C![-12,1748,1],C![-2,-2,1],C![-2,9,1],C![-1,-7,2],C![-1,-1,1],C![-1,0,2],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-16,2],C![1,-1,0],C![1,0,0],C![1,7,2],C![2,-14,1],C![2,5,1],C![9,-84825,40],C![9,20096,40]]; // minimal model
 
magma: [C![-12,-1769,1],C![-12,1769,1],C![-2,-11,1],C![-2,11,1],C![-1,-7,2],C![-1,-2,1],C![-1,7,2],C![-1,2,1],C![0,-1,1],C![0,1,1],C![1,-23,2],C![1,-1,0],C![1,1,0],C![1,23,2],C![2,-19,1],C![2,19,1],C![9,-104921,40],C![9,104921,40]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.368457\) \(\infty\)
\((-1 : -1 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.460081\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.312266\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.368457\) \(\infty\)
\((-1 : -1 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.460081\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.312266\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - z^3\) \(0.368457\) \(\infty\)
\((-1 : -2 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - z^3\) \(0.460081\) \(\infty\)
\((0 : -1 : 1) - (1 : 1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.312266\) \(\infty\)

2-torsion field: 6.0.3168448.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.040744 \)
Real period: \( 15.85897 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.646167 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(31\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 2 T + 31 T^{2} )\)
\(1597\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 39 T + 1597 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);