Minimal equation
$y^2 + (x^3 + 1)y = 2x^4 + 3x^3 + 3x^2 + x$
Invariants
magma: Conductor(LSeries(C)); Factorization($1);
|
|||||
\( N \) | = | \( 49507 \) | = | \( 31 \cdot 1597 \) | |
magma: Discriminant(C); Factorization(Integers()!$1);
|
|||||
\( \Delta \) | = | \(-49507\) | = | \( -1 \cdot 31 \cdot 1597 \) |
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | = | \(-600\) | = | \( -1 \cdot 2^{3} \cdot 3 \cdot 5^{2} \) |
\( I_4 \) | = | \(35556\) | = | \( 2^{2} \cdot 3 \cdot 2963 \) |
\( I_6 \) | = | \(-4357272\) | = | \( -1 \cdot 2^{3} \cdot 3 \cdot 181553 \) |
\( I_{10} \) | = | \(-202780672\) | = | \( -1 \cdot 2^{12} \cdot 31 \cdot 1597 \) |
\( J_2 \) | = | \(-75\) | = | \( -1 \cdot 3 \cdot 5^{2} \) |
\( J_4 \) | = | \(-136\) | = | \( -1 \cdot 2^{3} \cdot 17 \) |
\( J_6 \) | = | \(-1128\) | = | \( -1 \cdot 2^{3} \cdot 3 \cdot 47 \) |
\( J_8 \) | = | \(16526\) | = | \( 2 \cdot 8263 \) |
\( J_{10} \) | = | \(-49507\) | = | \( -1 \cdot 31 \cdot 1597 \) |
\( g_1 \) | = | \(2373046875/49507\) | ||
\( g_2 \) | = | \(-57375000/49507\) | ||
\( g_3 \) | = | \(6345000/49507\) |
Automorphism group
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
|||||
\(\mathrm{Aut}(X)\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) | ||
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
|||||
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) |
Rational points
This curve is locally solvable everywhere.
Known rational points: (-12 : -21 : 1), (-12 : 1748 : 1), (-2 : -2 : 1), (-2 : 9 : 1), (-1 : -7 : 2), (-1 : -1 : 1), (-1 : 0 : 2), (-1 : 1 : 1), (0 : -1 : 1), (0 : 0 : 1), (1 : -16 : 2), (1 : -1 : 0), (1 : 0 : 0), (1 : 7 : 2), (2 : -14 : 1), (2 : 5 : 1), (9 : -84825 : 40), (9 : 20096 : 40)
Number of rational Weierstrass points: \(0\)
Invariants of the Jacobian:
Analytic rank*: \(3\)
2-Selmer rank: \(3\)
Order of Ш*: square
Regulator: 0.0407445836158
Real period: 15.858977223376220431511869621
Tamagawa numbers: 1 (p = 31), 1 (p = 1597)
Torsion: \(\mathrm{trivial}\)
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition
Simple over \(\overline{\Q}\)
Endomorphisms
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).