Minimal equation
Minimal equation
Simplified equation
$y^2 + y = x^6 + 2x^4 + x^2$ | (homogenize, simplify) |
$y^2 + z^3y = x^6 + 2x^4z^2 + x^2z^4$ | (dehomogenize, simplify) |
$y^2 = 4x^6 + 8x^4 + 4x^2 + 1$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(484\) | \(=\) | \( 2^{2} \cdot 11^{2} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(-1936\) | \(=\) | \( - 2^{4} \cdot 11^{2} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(184\) | \(=\) | \( 2^{3} \cdot 23 \) |
\( I_4 \) | \(=\) | \(37\) | \(=\) | \( 37 \) |
\( I_6 \) | \(=\) | \(721\) | \(=\) | \( 7 \cdot 103 \) |
\( I_{10} \) | \(=\) | \(242\) | \(=\) | \( 2 \cdot 11^{2} \) |
\( J_2 \) | \(=\) | \(184\) | \(=\) | \( 2^{3} \cdot 23 \) |
\( J_4 \) | \(=\) | \(1386\) | \(=\) | \( 2 \cdot 3^{2} \cdot 7 \cdot 11 \) |
\( J_6 \) | \(=\) | \(15040\) | \(=\) | \( 2^{6} \cdot 5 \cdot 47 \) |
\( J_8 \) | \(=\) | \(211591\) | \(=\) | \( 457 \cdot 463 \) |
\( J_{10} \) | \(=\) | \(1936\) | \(=\) | \( 2^{4} \cdot 11^{2} \) |
\( g_1 \) | \(=\) | \(13181630464/121\) | ||
\( g_2 \) | \(=\) | \(49057344/11\) | ||
\( g_3 \) | \(=\) | \(31824640/121\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2^2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2^2$ |
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{15}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(2x^2 - xz + z^2\) | \(=\) | \(0,\) | \(4y\) | \(=\) | \(xz^2 - 3z^3\) | \(0\) | \(15\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(2x^2 - xz + z^2\) | \(=\) | \(0,\) | \(4y\) | \(=\) | \(xz^2 - 3z^3\) | \(0\) | \(15\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -2 : 0) - (1 : 2 : 0)\) | \(2x^2 - xz + z^2\) | \(=\) | \(0,\) | \(4y\) | \(=\) | \(2xz^2 - 5z^3\) | \(0\) | \(15\) |
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(0\) |
Regulator: | \( 1 \) |
Real period: | \( 15.31896 \) |
Tamagawa product: | \( 3 \) |
Torsion order: | \( 15 \) |
Leading coefficient: | \( 0.204252 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \(4\) | \(3\) | \(-1^*\) | \(1 + 2 T + 2 T^{2}\) | yes | |
\(11\) | \(2\) | \(2\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + T )\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.60.2 | no |
\(3\) | 3.720.4 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 44.a
Elliptic curve isogeny class 11.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).