Minimal equation
Minimal equation
Simplified equation
| $y^2 + (x^3 + 1)y = x^6 - 31x^5 - 56x^4 + 7x^3 + 20x^2 - 3x - 1$ | (homogenize, simplify) |
| $y^2 + (x^3 + z^3)y = x^6 - 31x^5z - 56x^4z^2 + 7x^3z^3 + 20x^2z^4 - 3xz^5 - z^6$ | (dehomogenize, simplify) |
| $y^2 = 5x^6 - 124x^5 - 224x^4 + 30x^3 + 80x^2 - 12x - 3$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(471900\) | \(=\) | \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(943800\) | \(=\) | \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(177620\) | \(=\) | \( 2^{2} \cdot 5 \cdot 83 \cdot 107 \) |
| \( I_4 \) | \(=\) | \(621435529\) | \(=\) | \( 11 \cdot 13 \cdot 4345703 \) |
| \( I_6 \) | \(=\) | \(35388246892229\) | \(=\) | \( 7 \cdot 11^{2} \cdot 73 \cdot 572338259 \) |
| \( I_{10} \) | \(=\) | \(120806400\) | \(=\) | \( 2^{10} \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
| \( J_2 \) | \(=\) | \(44405\) | \(=\) | \( 5 \cdot 83 \cdot 107 \) |
| \( J_4 \) | \(=\) | \(56265354\) | \(=\) | \( 2 \cdot 3^{4} \cdot 347317 \) |
| \( J_6 \) | \(=\) | \(30561804868\) | \(=\) | \( 2^{2} \cdot 7 \cdot 1091493031 \) |
| \( J_8 \) | \(=\) | \(-452173278895444\) | \(=\) | \( - 2^{2} \cdot 19 \cdot 61 \cdot 15017 \cdot 6494987 \) |
| \( J_{10} \) | \(=\) | \(943800\) | \(=\) | \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
| \( g_1 \) | \(=\) | \(6905885338921613550125/37752\) | ||
| \( g_2 \) | \(=\) | \(32843196581350130595/6292\) | ||
| \( g_3 \) | \(=\) | \(602618898499869937/9438\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
This curve has no rational points.
Number of rational Weierstrass points: \(0\)
This curve is locally solvable except over $\Q_{2}$.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{2}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - D_\infty\) | \(5x^2 + 6xz - 3z^2\) | \(=\) | \(0,\) | \(50y\) | \(=\) | \(-51xz^2 - 7z^3\) | \(0\) | \(2\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - D_\infty\) | \(5x^2 + 6xz - 3z^2\) | \(=\) | \(0,\) | \(50y\) | \(=\) | \(-51xz^2 - 7z^3\) | \(0\) | \(2\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - D_\infty\) | \(5x^2 + 6xz - 3z^2\) | \(=\) | \(0,\) | \(50y\) | \(=\) | \(x^3 - 102xz^2 - 13z^3\) | \(0\) | \(2\) |
2-torsion field: 6.6.13361376600.1
BSD invariants
| Hasse-Weil conjecture: | unverified |
| Analytic rank: | \(0\) |
| Mordell-Weil rank: | \(0\) |
| 2-Selmer rank: | \(4\) |
| Regulator: | \( 1 \) |
| Real period: | \( 1.063965 \) |
| Tamagawa product: | \( 1 \) |
| Torsion order: | \( 2 \) |
| Leading coefficient: | \( 2.127931 \) |
| Analytic order of Ш: | \( 8 \) (rounded) |
| Order of Ш: | twice a square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(2\) | \(3\) | \(1\) | \(-1^*\) | \(( 1 - T )( 1 + T )\) | yes | |
| \(3\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 - T + 3 T^{2} )\) | yes | |
| \(5\) | \(2\) | \(2\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + T )\) | yes | |
| \(11\) | \(2\) | \(2\) | \(1\) | \(-1\) | \(1 - 4 T + 11 T^{2}\) | yes | |
| \(13\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + 2 T + 13 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.15.1 | yes |
| \(3\) | 3.40.1 | no |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).