Properties

Label 46400.d.928000.1
Conductor $46400$
Discriminant $928000$
Mordell-Weil group \(\Z \oplus \Z/{6}\Z\)
Sato-Tate group $N(\mathrm{SU}(2)\times\mathrm{SU}(2))$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 = x^6 - 2x^5 - 3x^4 + 5x^3 + 3x^2 - 2x - 1$ (homogenize, simplify)
$y^2 = x^6 - 2x^5z - 3x^4z^2 + 5x^3z^3 + 3x^2z^4 - 2xz^5 - z^6$ (dehomogenize, simplify)
$y^2 = x^6 - 2x^5 - 3x^4 + 5x^3 + 3x^2 - 2x - 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, -2, 3, 5, -3, -2, 1]), R([]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, -2, 3, 5, -3, -2, 1], R![]);
 
sage: X = HyperellipticCurve(R([-1, -2, 3, 5, -3, -2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(46400\) \(=\) \( 2^{6} \cdot 5^{2} \cdot 29 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(928000\) \(=\) \( 2^{8} \cdot 5^{3} \cdot 29 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(694\) \(=\)  \( 2 \cdot 347 \)
\( I_4 \)  \(=\) \(1996\) \(=\)  \( 2^{2} \cdot 499 \)
\( I_6 \)  \(=\) \(478406\) \(=\)  \( 2 \cdot 251 \cdot 953 \)
\( I_{10} \)  \(=\) \(3625\) \(=\)  \( 5^{3} \cdot 29 \)
\( J_2 \)  \(=\) \(1388\) \(=\)  \( 2^{2} \cdot 347 \)
\( J_4 \)  \(=\) \(74950\) \(=\)  \( 2 \cdot 5^{2} \cdot 1499 \)
\( J_6 \)  \(=\) \(4840100\) \(=\)  \( 2^{2} \cdot 5^{2} \cdot 29 \cdot 1669 \)
\( J_8 \)  \(=\) \(275139075\) \(=\)  \( 3 \cdot 5^{2} \cdot 541 \cdot 6781 \)
\( J_{10} \)  \(=\) \(928000\) \(=\)  \( 2^{8} \cdot 5^{3} \cdot 29 \)
\( g_1 \)  \(=\) \(20123678266028/3625\)
\( g_2 \)  \(=\) \(62631102577/290\)
\( g_3 \)  \(=\) \(200962621/20\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (1 : -1 : 1),\, (1 : 1 : 1),\, (-1 : -1 : 2),\, (-1 : 1 : 2)\)
All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (1 : -1 : 1),\, (1 : 1 : 1),\, (-1 : -1 : 2),\, (-1 : 1 : 2)\)
All points: \((1 : -1/2 : 0),\, (1 : 1/2 : 0),\, (1 : -1/2 : 1),\, (1 : 1/2 : 1),\, (-1 : -1/2 : 2),\, (-1 : 1/2 : 2)\)

magma: [C![-1,-1,2],C![-1,1,2],C![1,-1,0],C![1,-1,1],C![1,1,0],C![1,1,1]]; // minimal model
 
magma: [C![-1,-1/2,2],C![-1,1/2,2],C![1,-1/2,0],C![1,-1/2,1],C![1,1/2,0],C![1,1/2,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{6}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -1 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 2z^3\) \(0.690071\) \(\infty\)
\((-1 : -1 : 2) + (1 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (2x + z)\) \(=\) \(0,\) \(4y\) \(=\) \(3xz^2 + z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\((1 : -1 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 2z^3\) \(0.690071\) \(\infty\)
\((-1 : -1 : 2) + (1 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (2x + z)\) \(=\) \(0,\) \(4y\) \(=\) \(3xz^2 + z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\((1 : -1/2 : 1) - (1 : -1/2 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(1/2x^3 - z^3\) \(0.690071\) \(\infty\)
\((-1 : -1/2 : 2) + (1 : 1/2 : 1) - (1 : -1/2 : 0) - (1 : 1/2 : 0)\) \((x - z) (2x + z)\) \(=\) \(0,\) \(4y\) \(=\) \(3/2xz^2 + 1/2z^3\) \(0\) \(6\)

2-torsion field: 4.4.725.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(2\)
Regulator: \( 0.690071 \)
Real period: \( 11.11146 \)
Tamagawa product: \( 9 \)
Torsion order:\( 6 \)
Leading coefficient: \( 1.916926 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(6\) \(8\) \(3\) \(1\)
\(5\) \(2\) \(3\) \(3\) \(( 1 - T )( 1 + T )\)
\(29\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 6 T + 29 T^{2} )\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.90.1 yes
\(3\) 3.2880.5 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $N(\mathrm{SU}(2)\times\mathrm{SU}(2))$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) \(\Q(\sqrt{-1}) \) with defining polynomial:
  \(x^{2} + 1\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 2.0.4.1-2900.4-a
  Elliptic curve isogeny class 2.0.4.1-2900.3-a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{-1}) \) with defining polynomial \(x^{2} + 1\)

Of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\R \times \R\)

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);