Properties

Label 461.a.461.1
Conductor 461
Discriminant 461
Mordell-Weil group \(\Z/{7}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + x^3y = x^5 - 3x^3 + 3x - 2$ (homogenize, simplify)
$y^2 + x^3y = x^5z - 3x^3z^3 + 3xz^5 - 2z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 4x^5 - 12x^3 + 12x - 8$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-2, 3, 0, -3, 0, 1]), R([0, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-2, 3, 0, -3, 0, 1], R![0, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-8, 12, 0, -12, 0, 4, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(461\) \(=\) \( 461 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(461\) \(=\) \( 461 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1176\) \(=\)  \( 2^{3} \cdot 3 \cdot 7^{2} \)
\( I_4 \)  \(=\) \(144\) \(=\)  \( 2^{4} \cdot 3^{2} \)
\( I_6 \)  \(=\) \(66456\) \(=\)  \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 71 \)
\( I_{10} \)  \(=\) \(1844\) \(=\)  \( 2^{2} \cdot 461 \)
\( J_2 \)  \(=\) \(588\) \(=\)  \( 2^{2} \cdot 3 \cdot 7^{2} \)
\( J_4 \)  \(=\) \(14382\) \(=\)  \( 2 \cdot 3^{2} \cdot 17 \cdot 47 \)
\( J_6 \)  \(=\) \(467132\) \(=\)  \( 2^{2} \cdot 29 \cdot 4027 \)
\( J_8 \)  \(=\) \(16957923\) \(=\)  \( 3 \cdot 23 \cdot 179 \cdot 1373 \)
\( J_{10} \)  \(=\) \(461\) \(=\)  \( 461 \)
\( g_1 \)  \(=\) \(70288881159168/461\)
\( g_2 \)  \(=\) \(2923824242304/461\)
\( g_3 \)  \(=\) \(161508086208/461\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (-2 : 4 : 1)\)

magma: [C![-2,4,1],C![1,-1,0],C![1,0,0]];
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{7}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-2 : 4 : 1) - (1 : -1 : 0)\) \(z (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(4z^3\) \(0\) \(7\)

2-torsion field: 5.1.7376.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(0\)
Regulator: \( 1 \)
Real period: \( 12.04843 \)
Tamagawa product: \( 1 \)
Torsion order:\( 7 \)
Leading coefficient: \( 0.245886 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(461\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 461 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).