# Properties

 Label 461.a Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

## Genus 2 curves in isogeny class 461.a

Label Equation
461.a.461.1 $$y^2 + x^3y = x^5 - 3x^3 + 3x - 2$$
461.a.461.2 $$y^2 + y = x^5 - x^4 - 39x^3 + 10x^2 + 272x - 306$$

## L-function data

Analytic rank:$$0$$
Mordell-Weil rank:$$0$$

Prime L-Factor
$$461$$$$( 1 + T )( 1 + 461 T^{2} )$$

Good L-factors:
Prime L-Factor
$$2$$$$1 + 2 T^{2} + 4 T^{4}$$
$$3$$$$( 1 + 3 T^{2} )( 1 + 3 T + 3 T^{2} )$$
$$5$$$$1 - T + T^{2} - 5 T^{3} + 25 T^{4}$$
$$7$$$$1 + 6 T^{2} + 49 T^{4}$$
$$11$$$$( 1 - 4 T + 11 T^{2} )( 1 + 2 T + 11 T^{2} )$$
$$13$$$$1 - T - 2 T^{2} - 13 T^{3} + 169 T^{4}$$
$$17$$$$1 - T - 13 T^{2} - 17 T^{3} + 289 T^{4}$$
$$19$$$$1 + T + 17 T^{2} + 19 T^{3} + 361 T^{4}$$
$$23$$$$1 + 3 T + 7 T^{2} + 69 T^{3} + 529 T^{4}$$
$$29$$$$1 - 2 T + 2 T^{2} - 58 T^{3} + 841 T^{4}$$
$\cdots$$\cdots$

## Sato-Tate group

$$\mathrm{ST} =$$ $\mathrm{USp}(4)$

## Endomorphisms of the Jacobian

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism algebra over $$\Q$$:

 $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.