Properties

Label 4336.a.138752.1
Conductor $4336$
Discriminant $138752$
Mordell-Weil group trivial
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x + 1)y = -11x^6 + 6x^5 + 22x^4 - 16x^3 - 6x^2 + 11x - 5$ (homogenize, simplify)
$y^2 + (xz^2 + z^3)y = -11x^6 + 6x^5z + 22x^4z^2 - 16x^3z^3 - 6x^2z^4 + 11xz^5 - 5z^6$ (dehomogenize, simplify)
$y^2 = -44x^6 + 24x^5 + 88x^4 - 64x^3 - 23x^2 + 46x - 19$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-5, 11, -6, -16, 22, 6, -11]), R([1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-5, 11, -6, -16, 22, 6, -11], R![1, 1]);
 
sage: X = HyperellipticCurve(R([-19, 46, -23, -64, 88, 24, -44]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(4336\) \(=\) \( 2^{4} \cdot 271 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(138752\) \(=\) \( 2^{9} \cdot 271 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(12440\) \(=\)  \( 2^{3} \cdot 5 \cdot 311 \)
\( I_4 \)  \(=\) \(748636\) \(=\)  \( 2^{2} \cdot 7 \cdot 26737 \)
\( I_6 \)  \(=\) \(21969201218\) \(=\)  \( 2 \cdot 17 \cdot 20533 \cdot 31469 \)
\( I_{10} \)  \(=\) \(-17344\) \(=\)  \( - 2^{6} \cdot 271 \)
\( J_2 \)  \(=\) \(12440\) \(=\)  \( 2^{3} \cdot 5 \cdot 311 \)
\( J_4 \)  \(=\) \(5948976\) \(=\)  \( 2^{4} \cdot 3 \cdot 11 \cdot 19 \cdot 593 \)
\( J_6 \)  \(=\) \(-13347212816\) \(=\)  \( - 2^{4} \cdot 7 \cdot 41 \cdot 2906623 \)
\( J_8 \)  \(=\) \(-50357410719904\) \(=\)  \( - 2^{5} \cdot 181 \cdot 193 \cdot 45048209 \)
\( J_{10} \)  \(=\) \(-138752\) \(=\)  \( - 2^{9} \cdot 271 \)
\( g_1 \)  \(=\) \(-581878004510200000/271\)
\( g_2 \)  \(=\) \(-22368321536682000/271\)
\( g_3 \)  \(=\) \(4034236783676050/271\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\Q_{2}$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: trivial

magma: MordellWeilGroupGenus2(Jacobian(C));
 

2-torsion field: 6.2.555008.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 0.376283 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.752566 \)
Analytic order of Ш: \( 2 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(9\) \(1\) \(1 + T\)
\(271\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 2 T + 271 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(3\) 3.80.2 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);