Properties

Label 4150.a.41500.1
Conductor $4150$
Discriminant $-41500$
Mordell-Weil group \(\Z \oplus \Z/{4}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x + 1)y = x^6 + 3x^5 + 2x^4 - x - 1$ (homogenize, simplify)
$y^2 + (x^2z + xz^2 + z^3)y = x^6 + 3x^5z + 2x^4z^2 - xz^5 - z^6$ (dehomogenize, simplify)
$y^2 = 4x^6 + 12x^5 + 9x^4 + 2x^3 + 3x^2 - 2x - 3$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, -1, 0, 0, 2, 3, 1]), R([1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, -1, 0, 0, 2, 3, 1], R![1, 1, 1]);
 
sage: X = HyperellipticCurve(R([-3, -2, 3, 2, 9, 12, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(4150\) \(=\) \( 2 \cdot 5^{2} \cdot 83 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-41500\) \(=\) \( - 2^{2} \cdot 5^{3} \cdot 83 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(756\) \(=\)  \( 2^{2} \cdot 3^{3} \cdot 7 \)
\( I_4 \)  \(=\) \(-35631\) \(=\)  \( - 3^{2} \cdot 37 \cdot 107 \)
\( I_6 \)  \(=\) \(-9830871\) \(=\)  \( - 3^{2} \cdot 149 \cdot 7331 \)
\( I_{10} \)  \(=\) \(-5312000\) \(=\)  \( - 2^{9} \cdot 5^{3} \cdot 83 \)
\( J_2 \)  \(=\) \(189\) \(=\)  \( 3^{3} \cdot 7 \)
\( J_4 \)  \(=\) \(2973\) \(=\)  \( 3 \cdot 991 \)
\( J_6 \)  \(=\) \(74225\) \(=\)  \( 5^{2} \cdot 2969 \)
\( J_8 \)  \(=\) \(1297449\) \(=\)  \( 3^{2} \cdot 144161 \)
\( J_{10} \)  \(=\) \(-41500\) \(=\)  \( - 2^{2} \cdot 5^{3} \cdot 83 \)
\( g_1 \)  \(=\) \(-241162079949/41500\)
\( g_2 \)  \(=\) \(-20071522737/41500\)
\( g_3 \)  \(=\) \(-106055649/1660\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : 0 : 1)\) \((-1 : -1 : 1)\) \((1 : 1 : 1)\) \((1 : -4 : 1)\)
\((-3 : -7 : 2)\) \((-13 : -475 : 8)\) \((-13 : -557 : 8)\)
All points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : 0 : 1)\) \((-1 : -1 : 1)\) \((1 : 1 : 1)\) \((1 : -4 : 1)\)
\((-3 : -7 : 2)\) \((-13 : -475 : 8)\) \((-13 : -557 : 8)\)
All points
\((1 : -2 : 0)\) \((1 : 2 : 0)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((-3 : 0 : 2)\) \((1 : -5 : 1)\)
\((1 : 5 : 1)\) \((-13 : -82 : 8)\) \((-13 : 82 : 8)\)

magma: [C![-13,-557,8],C![-13,-475,8],C![-3,-7,2],C![-1,-1,1],C![-1,0,1],C![1,-4,1],C![1,-1,0],C![1,1,0],C![1,1,1]]; // minimal model
 
magma: [C![-13,-82,8],C![-13,82,8],C![-3,0,2],C![-1,-1,1],C![-1,1,1],C![1,-5,1],C![1,-2,0],C![1,2,0],C![1,5,1]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{4}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-3 : -7 : 2) + (-1 : 0 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x + z) (2x + 3z)\) \(=\) \(0,\) \(4y\) \(=\) \(7xz^2 + 7z^3\) \(0.150550\) \(\infty\)
\((-1 : 0 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + z^3\) \(0\) \(4\)
Generator $D_0$ Height Order
\((-3 : -7 : 2) + (-1 : 0 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x + z) (2x + 3z)\) \(=\) \(0,\) \(4y\) \(=\) \(7xz^2 + 7z^3\) \(0.150550\) \(\infty\)
\((-1 : 0 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + z^3\) \(0\) \(4\)
Generator $D_0$ Height Order
\(D_0 - (1 : -2 : 0) - (1 : 2 : 0)\) \((x + z) (2x + 3z)\) \(=\) \(0,\) \(4y\) \(=\) \(x^2z + 15xz^2 + 15z^3\) \(0.150550\) \(\infty\)
\((-1 : 1 : 1) - (1 : -2 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(2x^3 + x^2z + xz^2 + 3z^3\) \(0\) \(4\)

2-torsion field: 6.2.861125.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(2\)
Regulator: \( 0.150550 \)
Real period: \( 14.51698 \)
Tamagawa product: \( 4 \)
Torsion order:\( 4 \)
Leading coefficient: \( 0.546384 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 - T + 2 T^{2} )\)
\(5\) \(2\) \(3\) \(2\) \(( 1 - T )( 1 + T )\)
\(83\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 83 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.60.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);