# Properties

 Label 41472.e Conductor $41472$ Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\End(J) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

## Genus 2 curves in isogeny class 41472.e

Label Equation
41472.e.746496.1 $$y^2 = 3x^5 + 6x^4 + 9x^3 + 7x^2 + 4x + 1$$

## L-function data

Analytic rank:$$1$$
Mordell-Weil rank:$$1$$

Prime L-Factor
$$2$$$$1$$
$$3$$$$1 - T$$

Good L-factors:
Prime L-Factor
$$5$$$$1 + 2 T + 6 T^{2} + 10 T^{3} + 25 T^{4}$$
$$7$$$$1 + T - 2 T^{2} + 7 T^{3} + 49 T^{4}$$
$$11$$$$( 1 - 2 T + 11 T^{2} )( 1 + 6 T + 11 T^{2} )$$
$$13$$$$1 + 3 T + 12 T^{2} + 39 T^{3} + 169 T^{4}$$
$$17$$$$1 + 6 T + 22 T^{2} + 102 T^{3} + 289 T^{4}$$
$$19$$$$1 + T - 22 T^{2} + 19 T^{3} + 361 T^{4}$$
$$23$$$$( 1 - 6 T + 23 T^{2} )( 1 + 6 T + 23 T^{2} )$$
$$29$$$$( 1 + 29 T^{2} )( 1 + 10 T + 29 T^{2} )$$
$\cdots$$\cdots$

## Sato-Tate group

$$\mathrm{ST} =$$ $\mathrm{USp}(4)$

## Decomposition of the Jacobian

Simple over $$\overline{\Q}$$

## Endomorphisms of the Jacobian

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism algebra over $$\Q$$:

 $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.