Properties

Label 39993.a.119979.1
Conductor $39993$
Discriminant $119979$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2 + 1)y = 2x^4 + x^3 - 2x^2 - x$ (homogenize, simplify)
$y^2 + (x^3 + x^2z + z^3)y = 2x^4z^2 + x^3z^3 - 2x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^5 + 9x^4 + 6x^3 - 6x^2 - 4x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, -2, 1, 2]), R([1, 0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, -2, 1, 2], R![1, 0, 1, 1]);
 
sage: X = HyperellipticCurve(R([1, -4, -6, 6, 9, 2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(39993\) \(=\) \( 3 \cdot 13331 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(119979\) \(=\) \( 3^{2} \cdot 13331 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(260\) \(=\)  \( 2^{2} \cdot 5 \cdot 13 \)
\( I_4 \)  \(=\) \(19033\) \(=\)  \( 7 \cdot 2719 \)
\( I_6 \)  \(=\) \(674317\) \(=\)  \( 7 \cdot 96331 \)
\( I_{10} \)  \(=\) \(15357312\) \(=\)  \( 2^{7} \cdot 3^{2} \cdot 13331 \)
\( J_2 \)  \(=\) \(65\) \(=\)  \( 5 \cdot 13 \)
\( J_4 \)  \(=\) \(-617\) \(=\)  \( -617 \)
\( J_6 \)  \(=\) \(5589\) \(=\)  \( 3^{5} \cdot 23 \)
\( J_8 \)  \(=\) \(-4351\) \(=\)  \( - 19 \cdot 229 \)
\( J_{10} \)  \(=\) \(119979\) \(=\)  \( 3^{2} \cdot 13331 \)
\( g_1 \)  \(=\) \(1160290625/119979\)
\( g_2 \)  \(=\) \(-169443625/119979\)
\( g_3 \)  \(=\) \(2623725/13331\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\)
\((-1 : -1 : 1)\) \((-1 : 0 : 2)\) \((2 : 2 : 1)\) \((1 : -3 : 1)\) \((-2 : -3 : 1)\) \((-2 : 6 : 1)\)
\((-1 : -9 : 2)\) \((2 : -15 : 1)\) \((-3 : -15 : 2)\) \((-3 : 16 : 2)\) \((1 : -56 : 5)\) \((1 : -63 : 6)\)
\((1 : -75 : 5)\) \((1 : -160 : 6)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\)
\((-1 : -1 : 1)\) \((-1 : 0 : 2)\) \((2 : 2 : 1)\) \((1 : -3 : 1)\) \((-2 : -3 : 1)\) \((-2 : 6 : 1)\)
\((-1 : -9 : 2)\) \((2 : -15 : 1)\) \((-3 : -15 : 2)\) \((-3 : 16 : 2)\) \((1 : -56 : 5)\) \((1 : -63 : 6)\)
\((1 : -75 : 5)\) \((1 : -160 : 6)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -3 : 1)\) \((1 : 3 : 1)\) \((-2 : -9 : 1)\) \((-2 : 9 : 1)\) \((-1 : -9 : 2)\) \((-1 : 9 : 2)\)
\((2 : -17 : 1)\) \((2 : 17 : 1)\) \((1 : -19 : 5)\) \((1 : 19 : 5)\) \((-3 : -31 : 2)\) \((-3 : 31 : 2)\)
\((1 : -97 : 6)\) \((1 : 97 : 6)\)

magma: [C![-3,-15,2],C![-3,16,2],C![-2,-3,1],C![-2,6,1],C![-1,-9,2],C![-1,-1,1],C![-1,0,1],C![-1,0,2],C![0,-1,1],C![0,0,1],C![1,-160,6],C![1,-75,5],C![1,-63,6],C![1,-56,5],C![1,-3,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![2,-15,1],C![2,2,1]]; // minimal model
 
magma: [C![-3,-31,2],C![-3,31,2],C![-2,-9,1],C![-2,9,1],C![-1,-9,2],C![-1,-1,1],C![-1,1,1],C![-1,9,2],C![0,-1,1],C![0,1,1],C![1,-97,6],C![1,-19,5],C![1,97,6],C![1,19,5],C![1,-3,1],C![1,-1,0],C![1,1,0],C![1,3,1],C![2,-17,1],C![2,17,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : 0 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.390167\) \(\infty\)
\((0 : 0 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.456379\) \(\infty\)
\((-1 : -1 : 1) + (1 : -3 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - 2z^3\) \(0.094506\) \(\infty\)
Generator $D_0$ Height Order
\((1 : 0 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.390167\) \(\infty\)
\((0 : 0 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.456379\) \(\infty\)
\((-1 : -1 : 1) + (1 : -3 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - 2z^3\) \(0.094506\) \(\infty\)
Generator $D_0$ Height Order
\((1 : 3 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + z^3\) \(0.390167\) \(\infty\)
\((0 : 1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + z^3\) \(0.456379\) \(\infty\)
\((-1 : -1 : 1) + (1 : -3 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z - 2xz^2 - 3z^3\) \(0.094506\) \(\infty\)

2-torsion field: 6.2.853184.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.013478 \)
Real period: \( 18.81218 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.507135 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 2 T + 3 T^{2} )\)
\(13331\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 70 T + 13331 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);