Properties

Label 3969.d
Conductor $3969$
Sato-Tate group $J(E_1)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{RM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more

L-function data

Analytic rank:\(0\)
Mordell-Weil rank:\(0\)
 
Bad L-factors:
Prime L-Factor
\(3\)\( 1\)
\(7\)\( ( 1 - T )^{2}\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T^{2} + 4 T^{4}\) 2.2.a_b
\(5\) \( 1 - 2 T^{2} + 25 T^{4}\) 2.5.a_ac
\(11\) \( 1 + 10 T^{2} + 121 T^{4}\) 2.11.a_k
\(13\) \( ( 1 - 2 T + 13 T^{2} )^{2}\) 2.13.ae_be
\(17\) \( 1 + 22 T^{2} + 289 T^{4}\) 2.17.a_w
\(19\) \( ( 1 + 4 T + 19 T^{2} )^{2}\) 2.19.i_cc
\(23\) \( 1 + 34 T^{2} + 529 T^{4}\) 2.23.a_bi
\(29\) \( ( 1 + 29 T^{2} )^{2}\) 2.29.a_cg
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Sato-Tate group

\(\mathrm{ST} =\) $J(E_1)$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) \(\Q(\sqrt{-3}) \) with defining polynomial:
  \(x^{2} - x + 1\)

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  Elliptic curve isogeny class 2.0.3.1-441.2-a

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism algebra over \(\Q\):

\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{-3}) \) with defining polynomial \(x^{2} - x + 1\)

Endomorphism algebra over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.

Genus 2 curves in isogeny class 3969.d

Label Equation
3969.d.250047.1 \(y^2 + (x^2 + x + 1)y = -3x^5 + 5x^4 - 4x^3 + x\)