Properties

Label 394.a.394.1
Conductor 394
Discriminant 394
Mordell-Weil group \(\Z/{10}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-9, 17, 0, -12, 1, 2], R![0, 1, 0, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-9, 17, 0, -12, 1, 2]), R([0, 1, 0, 1]))
 

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-9, 17, 0, -12, 1, 2], R![0, 1, 0, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-36, 68, 1, -48, 6, 8, 1]))
 

$y^2 + (x^3 + x)y = 2x^5 + x^4 - 12x^3 + 17x - 9$ (homogenize, simplify)
$y^2 + (x^3 + xz^2)y = 2x^5z + x^4z^2 - 12x^3z^3 + 17xz^5 - 9z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 8x^5 + 6x^4 - 48x^3 + x^2 + 68x - 36$ (minimize, homogenize)

Invariants

\( N \)  =  \(394\) = \( 2 \cdot 197 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
\( \Delta \)  =  \(394\) = \( 2 \cdot 197 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
 

G2 invariants

magma: G2Invariants(C);
 

\( I_2 \)  = \(44128\) =  \( 2^{5} \cdot 7 \cdot 197 \)
\( I_4 \)  = \(1700800\) =  \( 2^{6} \cdot 5^{2} \cdot 1063 \)
\( I_6 \)  = \(25210470848\) =  \( 2^{6} \cdot 393913607 \)
\( I_{10} \)  = \(1613824\) =  \( 2^{13} \cdot 197 \)
\( J_2 \)  = \(5516\) =  \( 2^{2} \cdot 7 \cdot 197 \)
\( J_4 \)  = \(1250044\) =  \( 2^{2} \cdot 17 \cdot 31 \cdot 593 \)
\( J_6 \)  = \(371875905\) =  \( 3^{2} \cdot 5 \cdot 8263909 \)
\( J_8 \)  = \(122164372511\) =  \( 23 \cdot 89 \cdot 127 \cdot 469919 \)
\( J_{10} \)  = \(394\) =  \( 2 \cdot 197 \)
\( g_1 \)  = \(12960598758485504\)
\( g_2 \)  = \(532478222573696\)
\( g_3 \)  = \(28717744887720\)

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$

Rational points

magma: [C![1,-1,0],C![1,-1,1],C![1,0,0]];
 

Points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : -1 : 1)\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

Number of rational Weierstrass points: \(1\)

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

This curve is locally solvable everywhere.

Mordell-Weil group of the Jacobian:

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Group structure: \(\Z/{10}\Z\)

Generator Height Order
\(2x^2 + 8xz - 9z^2\) \(=\) \(0,\) \(y\) \(=\) \(-11xz^2 + 9z^3\) \(0\) \(10\)

2-torsion field: 6.6.79480832.1

BSD invariants

Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 20.07827 \)
Tamagawa product: \( 1 \)
Torsion order:\( 10 \)
Leading coefficient: \( 0.200782 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor
\(2\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 2 T + 2 T^{2} )\)
\(197\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 18 T + 197 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).