Properties

Label 39017.a.39017.1
Conductor $39017$
Discriminant $-39017$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = -x^5 + x$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = -x^5z + xz^5$ (dehomogenize, simplify)
$y^2 = x^6 - 4x^5 + 2x^4 + 2x^3 + x^2 + 6x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, 0, 0, 0, -1]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, 0, 0, 0, -1], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 6, 1, 2, 2, -4, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(39017\) \(=\) \( 11 \cdot 3547 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-39017\) \(=\) \( - 11 \cdot 3547 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(604\) \(=\)  \( 2^{2} \cdot 151 \)
\( I_4 \)  \(=\) \(-1943\) \(=\)  \( - 29 \cdot 67 \)
\( I_6 \)  \(=\) \(386715\) \(=\)  \( 3 \cdot 5 \cdot 7 \cdot 29 \cdot 127 \)
\( I_{10} \)  \(=\) \(4994176\) \(=\)  \( 2^{7} \cdot 11 \cdot 3547 \)
\( J_2 \)  \(=\) \(151\) \(=\)  \( 151 \)
\( J_4 \)  \(=\) \(1031\) \(=\)  \( 1031 \)
\( J_6 \)  \(=\) \(-797\) \(=\)  \( -797 \)
\( J_8 \)  \(=\) \(-295827\) \(=\)  \( - 3 \cdot 7 \cdot 14087 \)
\( J_{10} \)  \(=\) \(39017\) \(=\)  \( 11 \cdot 3547 \)
\( g_1 \)  \(=\) \(78502725751/39017\)
\( g_2 \)  \(=\) \(3549682481/39017\)
\( g_3 \)  \(=\) \(-18172397/39017\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\)
\((-1 : 1 : 1)\) \((1 : 2 : 2)\) \((1 : -3 : 1)\) \((2 : -5 : 1)\) \((2 : -6 : 1)\) \((1 : -15 : 2)\)
\((3 : -15 : 1)\) \((3 : -16 : 1)\) \((-1 : -74 : 6)\) \((-1 : -105 : 6)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\)
\((-1 : 1 : 1)\) \((1 : 2 : 2)\) \((1 : -3 : 1)\) \((2 : -5 : 1)\) \((2 : -6 : 1)\) \((1 : -15 : 2)\)
\((3 : -15 : 1)\) \((3 : -16 : 1)\) \((-1 : -74 : 6)\) \((-1 : -105 : 6)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((2 : -1 : 1)\) \((2 : 1 : 1)\) \((1 : -3 : 1)\) \((1 : 3 : 1)\) \((3 : -1 : 1)\) \((3 : 1 : 1)\)
\((1 : -17 : 2)\) \((1 : 17 : 2)\) \((-1 : -31 : 6)\) \((-1 : 31 : 6)\)

magma: [C![-1,-105,6],C![-1,-74,6],C![-1,0,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-15,2],C![1,-3,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![1,2,2],C![2,-6,1],C![2,-5,1],C![3,-16,1],C![3,-15,1]]; // minimal model
 
magma: [C![-1,-31,6],C![-1,31,6],C![-1,-1,1],C![-1,1,1],C![0,-1,1],C![0,1,1],C![1,-17,2],C![1,-3,1],C![1,-1,0],C![1,1,0],C![1,3,1],C![1,17,2],C![2,-1,1],C![2,1,1],C![3,-1,1],C![3,1,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) + (2 : -5 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 - z^3\) \(0.663005\) \(\infty\)
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.286528\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(-x^2z\) \(0.159398\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) + (2 : -5 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 - z^3\) \(0.663005\) \(\infty\)
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.286528\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(-x^2z\) \(0.159398\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) + (2 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 3xz^2 - z^3\) \(0.663005\) \(\infty\)
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2 - z^3\) \(0.286528\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 2x^2z + xz^2 + z^3\) \(0.159398\) \(\infty\)

2-torsion field: 6.4.2497088.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.027876 \)
Real period: \( 18.01048 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.502076 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(11\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 4 T + 11 T^{2} )\)
\(3547\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 13 T + 3547 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);