# Properties

 Label 39017.a.39017.1 Conductor 39017 Discriminant -39017 Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

Show commands for: Magma / SageMath

## Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, 0, 0, 0, -1], R![1, 1, 0, 1]);

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, 0, 0, 0, -1]), R([1, 1, 0, 1]))

$y^2 + (x^3 + x + 1)y = -x^5 + x$

## Invariants

 magma: Conductor(LSeries(C)); Factorization($1); $$N$$ = $$39017$$ = $$11 \cdot 3547$$ magma: Discriminant(C); Factorization(Integers()!$1); $$\Delta$$ = $$-39017$$ = $$-1 \cdot 11 \cdot 3547$$

### G2 invariants

magma: G2Invariants(C);

 $$I_2$$ = $$-1208$$ = $$-1 \cdot 2^{3} \cdot 151$$ $$I_4$$ = $$-7772$$ = $$-1 \cdot 2^{2} \cdot 29 \cdot 67$$ $$I_6$$ = $$-3093720$$ = $$-1 \cdot 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 127$$ $$I_{10}$$ = $$-159813632$$ = $$-1 \cdot 2^{12} \cdot 11 \cdot 3547$$ $$J_2$$ = $$-151$$ = $$-1 \cdot 151$$ $$J_4$$ = $$1031$$ = $$1031$$ $$J_6$$ = $$797$$ = $$797$$ $$J_8$$ = $$-295827$$ = $$-1 \cdot 3 \cdot 7 \cdot 14087$$ $$J_{10}$$ = $$-39017$$ = $$-1 \cdot 11 \cdot 3547$$ $$g_1$$ = $$78502725751/39017$$ $$g_2$$ = $$3549682481/39017$$ $$g_3$$ = $$-18172397/39017$$
Alternative geometric invariants: G2

## Automorphism group

 magma: AutomorphismGroup(C); IdentifyGroup($1); $$\mathrm{Aut}(X)$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1]) magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1); $$\mathrm{Aut}(X_{\overline{\Q}})$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1])

## Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![-1,-105,6],C![-1,-74,6],C![-1,0,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-15,2],C![1,-3,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![1,2,2],C![2,-6,1],C![2,-5,1],C![3,-16,1],C![3,-15,1]];

Known rational points: (-1 : -105 : 6), (-1 : -74 : 6), (-1 : 0 : 1), (-1 : 1 : 1), (0 : -1 : 1), (0 : 0 : 1), (1 : -15 : 2), (1 : -3 : 1), (1 : -1 : 0), (1 : 0 : 0), (1 : 0 : 1), (1 : 2 : 2), (2 : -6 : 1), (2 : -5 : 1), (3 : -16 : 1), (3 : -15 : 1)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: $$0$$

## Invariants of the Jacobian:

Analytic rank*: $$3$$

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1); 2-Selmer rank: $$3$$ magma: HasSquareSha(Jacobian(C)); Order of Ш*: square Regulator: 0.0278769145434 Real period: 18.010486558986057906446097616 Tamagawa numbers: 1 (p = 11), 1 (p = 3547) magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: $$\mathrm{trivial}$$

### Sato-Tate group

 $$\mathrm{ST}$$ $$\simeq$$ $\mathrm{USp}(4)$ $$\mathrm{ST}^0$$ $$\simeq$$ $$\mathrm{USp}(4)$$

### Decomposition

Simple over $$\overline{\Q}$$

### Endomorphisms

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism ring over $$\Q$$:
 $$\End (J_{})$$ $$\simeq$$ $$\Z$$ $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.