Properties

Label 3860.a.77200.1
Conductor $3860$
Discriminant $-77200$
Mordell-Weil group \(\Z \oplus \Z/{3}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + x^3y = 4x^2 - 4x + 1$ (homogenize, simplify)
$y^2 + x^3y = 4x^2z^4 - 4xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 16x^2 - 16x + 4$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, -4, 4]), R([0, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, -4, 4], R![0, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([4, -16, 16, 0, 0, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(3860\) \(=\) \( 2^{2} \cdot 5 \cdot 193 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-77200\) \(=\) \( - 2^{4} \cdot 5^{2} \cdot 193 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(120\) \(=\)  \( 2^{3} \cdot 3 \cdot 5 \)
\( I_4 \)  \(=\) \(3477\) \(=\)  \( 3 \cdot 19 \cdot 61 \)
\( I_6 \)  \(=\) \(133257\) \(=\)  \( 3 \cdot 43 \cdot 1033 \)
\( I_{10} \)  \(=\) \(9650\) \(=\)  \( 2 \cdot 5^{2} \cdot 193 \)
\( J_2 \)  \(=\) \(120\) \(=\)  \( 2^{3} \cdot 3 \cdot 5 \)
\( J_4 \)  \(=\) \(-1718\) \(=\)  \( - 2 \cdot 859 \)
\( J_6 \)  \(=\) \(-37184\) \(=\)  \( - 2^{6} \cdot 7 \cdot 83 \)
\( J_8 \)  \(=\) \(-1853401\) \(=\)  \( - 11 \cdot 168491 \)
\( J_{10} \)  \(=\) \(77200\) \(=\)  \( 2^{4} \cdot 5^{2} \cdot 193 \)
\( g_1 \)  \(=\) \(62208000/193\)
\( g_2 \)  \(=\) \(-7421760/193\)
\( g_3 \)  \(=\) \(-1338624/193\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 2)\) \((1 : -1 : 2)\)
\((2 : 1 : 1)\) \((2 : -9 : 1)\)
All points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 2)\) \((1 : -1 : 2)\)
\((2 : 1 : 1)\) \((2 : -9 : 1)\)
All points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -2 : 1)\) \((0 : 2 : 1)\) \((1 : -1 : 2)\) \((1 : 1 : 2)\)
\((2 : -10 : 1)\) \((2 : 10 : 1)\)

magma: [C![0,-1,1],C![0,1,1],C![1,-1,0],C![1,-1,2],C![1,0,0],C![1,0,2],C![2,-9,1],C![2,1,1]]; // minimal model
 
magma: [C![0,-2,1],C![0,2,1],C![1,-1,0],C![1,-1,2],C![1,1,0],C![1,1,2],C![2,-10,1],C![2,10,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{3}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -1 : 2) + (2 : 1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - 2z) (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(3xz^2 - 2z^3\) \(0.043869\) \(\infty\)
\(2 \cdot(0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2 - z^3\) \(0\) \(3\)
Generator $D_0$ Height Order
\((1 : -1 : 2) + (2 : 1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - 2z) (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(3xz^2 - 2z^3\) \(0.043869\) \(\infty\)
\(2 \cdot(0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2 - z^3\) \(0\) \(3\)
Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - 2z) (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(x^3 + 6xz^2 - 4z^3\) \(0.043869\) \(\infty\)
\(2 \cdot(0 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + 4xz^2 - 2z^3\) \(0\) \(3\)

2-torsion field: 6.0.49408.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(1\)
Regulator: \( 0.043869 \)
Real period: \( 18.56682 \)
Tamagawa product: \( 6 \)
Torsion order:\( 3 \)
Leading coefficient: \( 0.543012 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(4\) \(3\) \(1 + 2 T^{2}\)
\(5\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 + 3 T + 5 T^{2} )\)
\(193\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 5 T + 193 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.10.1 no
\(3\) 3.80.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);