Properties

Label 3792.b.485376.1
Conductor $3792$
Discriminant $485376$
Mordell-Weil group \(\Z/{10}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x + 1)y = 56x^6 + 8x^5 - 67x^4 - 7x^3 + 27x^2 + x - 4$ (homogenize, simplify)
$y^2 + (xz^2 + z^3)y = 56x^6 + 8x^5z - 67x^4z^2 - 7x^3z^3 + 27x^2z^4 + xz^5 - 4z^6$ (dehomogenize, simplify)
$y^2 = 224x^6 + 32x^5 - 268x^4 - 28x^3 + 109x^2 + 6x - 15$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-4, 1, 27, -7, -67, 8, 56]), R([1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-4, 1, 27, -7, -67, 8, 56], R![1, 1]);
 
sage: X = HyperellipticCurve(R([-15, 6, 109, -28, -268, 32, 224]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(3792\) \(=\) \( 2^{4} \cdot 3 \cdot 79 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(485376\) \(=\) \( 2^{11} \cdot 3 \cdot 79 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(160772\) \(=\)  \( 2^{2} \cdot 40193 \)
\( I_4 \)  \(=\) \(8953\) \(=\)  \( 7 \cdot 1279 \)
\( I_6 \)  \(=\) \(479829669\) \(=\)  \( 3 \cdot 11 \cdot 859 \cdot 16927 \)
\( I_{10} \)  \(=\) \(60672\) \(=\)  \( 2^{8} \cdot 3 \cdot 79 \)
\( J_2 \)  \(=\) \(160772\) \(=\)  \( 2^{2} \cdot 40193 \)
\( J_4 \)  \(=\) \(1076978864\) \(=\)  \( 2^{4} \cdot 13^{2} \cdot 23 \cdot 17317 \)
\( J_6 \)  \(=\) \(9619229234176\) \(=\)  \( 2^{10} \cdot 181 \cdot 51899329 \)
\( J_8 \)  \(=\) \(96654812233553344\) \(=\)  \( 2^{6} \cdot 218423 \cdot 6914250977 \)
\( J_{10} \)  \(=\) \(485376\) \(=\)  \( 2^{11} \cdot 3 \cdot 79 \)
\( g_1 \)  \(=\) \(104894354662677385384193/474\)
\( g_2 \)  \(=\) \(4370573889022291088203/474\)
\( g_3 \)  \(=\) \(121403484224429853608/237\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{10}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(2x^2 - z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-2xz^2 - z^3\) \(0\) \(10\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(2x^2 - z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-2xz^2 - z^3\) \(0\) \(10\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(2x^2 - z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-3xz^2 - z^3\) \(0\) \(10\)

2-torsion field: 6.2.21568896.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(3\)
Regulator: \( 1 \)
Real period: \( 4.954076 \)
Tamagawa product: \( 5 \)
Torsion order:\( 10 \)
Leading coefficient: \( 0.990815 \)
Analytic order of Ш: \( 4 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(11\) \(5\) \(1 - T\)
\(3\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + T + 3 T^{2} )\)
\(79\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 79 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.15.1 yes
\(5\) not computed yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);