Properties

Label 3564.b.705672.1
Conductor 3564
Discriminant -705672
Mordell-Weil group \(\Z \times \Z/{3}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = 2x^2 + 4x + 2$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = 2x^2z^4 + 4xz^5 + 2z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^4 + 2x^3 + 9x^2 + 18x + 9$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2, 4, 2]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2, 4, 2], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([9, 18, 9, 2, 2, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(3564\) \(=\) \( 2^{2} \cdot 3^{4} \cdot 11 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-705672\) \(=\) \( - 2^{3} \cdot 3^{6} \cdot 11^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(-2424\) \(=\)  \( - 2^{3} \cdot 3 \cdot 101 \)
\( I_4 \)  \(=\) \(235332\) \(=\)  \( 2^{2} \cdot 3^{3} \cdot 2179 \)
\( I_6 \)  \(=\) \(-164561976\) \(=\)  \( - 2^{3} \cdot 3^{3} \cdot 761861 \)
\( I_{10} \)  \(=\) \(-2890432512\) \(=\)  \( - 2^{15} \cdot 3^{6} \cdot 11^{2} \)
\( J_2 \)  \(=\) \(-303\) \(=\)  \( - 3 \cdot 101 \)
\( J_4 \)  \(=\) \(1374\) \(=\)  \( 2 \cdot 3 \cdot 229 \)
\( J_6 \)  \(=\) \(14980\) \(=\)  \( 2^{2} \cdot 5 \cdot 7 \cdot 107 \)
\( J_8 \)  \(=\) \(-1606704\) \(=\)  \( - 2^{4} \cdot 3 \cdot 11 \cdot 17 \cdot 179 \)
\( J_{10} \)  \(=\) \(-705672\) \(=\)  \( - 2^{3} \cdot 3^{6} \cdot 11^{2} \)
\( g_1 \)  \(=\) \(10510100501/2904\)
\( g_2 \)  \(=\) \(235938929/4356\)
\( g_3 \)  \(=\) \(-38202745/19602\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((0 : 1 : 1)\) \((-1 : 1 : 1)\) \((0 : -2 : 1)\)
\((3 : 1 : 1)\) \((-3 : -1 : 2)\) \((3 : -32 : 1)\) \((-3 : 32 : 2)\)

magma: [C![-3,-1,2],C![-3,32,2],C![-1,0,1],C![-1,1,1],C![0,-2,1],C![0,1,1],C![1,-1,0],C![1,0,0],C![3,-32,1],C![3,1,1]];
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \times \Z/{3}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 - 2xz + 3z^2\) \(=\) \(0,\) \(y\) \(=\) \(4z^3\) \(0.017792\) \(\infty\)
\(2 \cdot(0 : 1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 + z^3\) \(0\) \(3\)

2-torsion field: 6.0.41472.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(1\)
Regulator: \( 0.017792 \)
Real period: \( 12.92260 \)
Tamagawa product: \( 18 \)
Torsion order:\( 3 \)
Leading coefficient: \( 0.459848 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(3\) \(3\) \(1 + T + T^{2}\)
\(3\) \(4\) \(6\) \(3\) \(1 + T + 3 T^{2}\)
\(11\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 3 T + 11 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).