Properties

Label 3528.d.98784.1
Conductor $3528$
Discriminant $98784$
Mordell-Weil group \(\Z/{4}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x)y = 5x^6 + 35x^4 + 58x^2 - 6$ (homogenize, simplify)
$y^2 + (x^3 + xz^2)y = 5x^6 + 35x^4z^2 + 58x^2z^4 - 6z^6$ (dehomogenize, simplify)
$y^2 = 21x^6 + 142x^4 + 233x^2 - 24$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-6, 0, 58, 0, 35, 0, 5]), R([0, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-6, 0, 58, 0, 35, 0, 5], R![0, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([-24, 0, 233, 0, 142, 0, 21]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(3528\) \(=\) \( 2^{3} \cdot 3^{2} \cdot 7^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(98784\) \(=\) \( 2^{5} \cdot 3^{2} \cdot 7^{3} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(102104\) \(=\)  \( 2^{3} \cdot 12763 \)
\( I_4 \)  \(=\) \(1415414800\) \(=\)  \( 2^{4} \cdot 5^{2} \cdot 383 \cdot 9239 \)
\( I_6 \)  \(=\) \(30422925221844\) \(=\)  \( 2^{2} \cdot 3 \cdot 37 \cdot 881 \cdot 2521 \cdot 30851 \)
\( I_{10} \)  \(=\) \(-395136\) \(=\)  \( - 2^{7} \cdot 3^{2} \cdot 7^{3} \)
\( J_2 \)  \(=\) \(51052\) \(=\)  \( 2^{2} \cdot 12763 \)
\( J_4 \)  \(=\) \(-127306354\) \(=\)  \( - 2 \cdot 7 \cdot 9093311 \)
\( J_6 \)  \(=\) \(273036774528\) \(=\)  \( 2^{7} \cdot 3^{2} \cdot 7^{2} \cdot 31 \cdot 337 \cdot 463 \)
\( J_8 \)  \(=\) \(-566958588892465\) \(=\)  \( - 5 \cdot 7^{2} \cdot 11^{2} \cdot 2269 \cdot 8428793 \)
\( J_{10} \)  \(=\) \(-98784\) \(=\)  \( - 2^{5} \cdot 3^{2} \cdot 7^{3} \)
\( g_1 \)  \(=\) \(-10837118556316216321376/3087\)
\( g_2 \)  \(=\) \(75620639140599294068/441\)
\( g_3 \)  \(=\) \(-50426415525146176/7\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\Q_{2}$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{4}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 + 3z^2\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2\) \(0\) \(4\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 + 3z^2\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2\) \(0\) \(4\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 + 3z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + 5xz^2\) \(0\) \(4\)

2-torsion field: 8.0.260112384.7

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(3\)
Regulator: \( 1 \)
Real period: \( 1.268722 \)
Tamagawa product: \( 3 \)
Torsion order:\( 4 \)
Leading coefficient: \( 0.951541 \)
Analytic order of Ш: \( 4 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(3\) \(5\) \(1\) \(1 - T\)
\(3\) \(2\) \(2\) \(1\) \(( 1 - T )( 1 + T )\)
\(7\) \(2\) \(3\) \(3\) \(( 1 - T )( 1 + T )\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.45.1 yes
\(3\) 3.720.5 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 84.b
  Elliptic curve isogeny class 42.a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);