Properties

Label 3417.a.686817.1
Conductor $3417$
Discriminant $686817$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = 3x^5 - 9x^4 + 6x^3 - x$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = 3x^5z - 9x^4z^2 + 6x^3z^3 - xz^5$ (dehomogenize, simplify)
$y^2 = 12x^5 - 35x^4 + 26x^3 + x^2 - 4x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 0, 6, -9, 3]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 0, 6, -9, 3], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([0, -4, 1, 26, -35, 12]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(3417\) \(=\) \( 3 \cdot 17 \cdot 67 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(686817\) \(=\) \( 3^{2} \cdot 17 \cdot 67^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1348\) \(=\)  \( 2^{2} \cdot 337 \)
\( I_4 \)  \(=\) \(46057\) \(=\)  \( 11 \cdot 53 \cdot 79 \)
\( I_6 \)  \(=\) \(19365765\) \(=\)  \( 3 \cdot 5 \cdot 29 \cdot 44519 \)
\( I_{10} \)  \(=\) \(87912576\) \(=\)  \( 2^{7} \cdot 3^{2} \cdot 17 \cdot 67^{2} \)
\( J_2 \)  \(=\) \(337\) \(=\)  \( 337 \)
\( J_4 \)  \(=\) \(2813\) \(=\)  \( 29 \cdot 97 \)
\( J_6 \)  \(=\) \(-731\) \(=\)  \( - 17 \cdot 43 \)
\( J_8 \)  \(=\) \(-2039829\) \(=\)  \( - 3 \cdot 11 \cdot 61813 \)
\( J_{10} \)  \(=\) \(686817\) \(=\)  \( 3^{2} \cdot 17 \cdot 67^{2} \)
\( g_1 \)  \(=\) \(4346598285457/686817\)
\( g_2 \)  \(=\) \(107661254189/686817\)
\( g_3 \)  \(=\) \(-4883467/40401\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1),\, (-1 : 3 : 3)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1),\, (-1 : 3 : 3)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : 0 : 1),\, (-1 : 0 : 3)\)

magma: [C![-1,3,3],C![0,0,1],C![1,-1,1],C![1,0,0]]; // minimal model
 
magma: [C![-1,0,3],C![0,0,1],C![1,0,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(4\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x^2 - 9xz + 4z^2\) \(=\) \(0,\) \(8y\) \(=\) \(-13xz^2 + 4z^3\) \(0\) \(2\)
\((-1 : 3 : 3) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - z) (3x + z)\) \(=\) \(0,\) \(6y\) \(=\) \(-5xz^2 - z^3\) \(0\) \(2\)
\((1 : -1 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x^2 - 9xz + 4z^2\) \(=\) \(0,\) \(8y\) \(=\) \(-13xz^2 + 4z^3\) \(0\) \(2\)
\((-1 : 3 : 3) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - z) (3x + z)\) \(=\) \(0,\) \(6y\) \(=\) \(-5xz^2 - z^3\) \(0\) \(2\)
\((1 : -1 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x^2 - 9xz + 4z^2\) \(=\) \(0,\) \(8y\) \(=\) \(x^2z - 25xz^2 + 8z^3\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \((x - z) (3x + z)\) \(=\) \(0,\) \(6y\) \(=\) \(x^2z - 9xz^2 - 2z^3\) \(0\) \(2\)
\((1 : 0 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2 - 2z^3\) \(0\) \(2\)

2-torsion field: \(\Q(\sqrt{17}) \)

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(3\)
Regulator: \( 1 \)
Real period: \( 11.58029 \)
Tamagawa product: \( 4 \)
Torsion order:\( 8 \)
Leading coefficient: \( 0.723768 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 + 2 T + 3 T^{2} )\)
\(17\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 2 T + 17 T^{2} )\)
\(67\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 - 4 T + 67 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.360.2 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);