Properties

Label 3336.c.80064.1
Conductor $3336$
Discriminant $-80064$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{8}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x + 1)y = 6x^5 + 2x^4 + 2x^2 + x$ (homogenize, simplify)
$y^2 + (xz^2 + z^3)y = 6x^5z + 2x^4z^2 + 2x^2z^4 + xz^5$ (dehomogenize, simplify)
$y^2 = 24x^5 + 8x^4 + 9x^2 + 6x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, 2, 0, 2, 6]), R([1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, 2, 0, 2, 6], R![1, 1]);
 
sage: X = HyperellipticCurve(R([1, 6, 9, 0, 8, 24]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(3336\) \(=\) \( 2^{3} \cdot 3 \cdot 139 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-80064\) \(=\) \( - 2^{6} \cdot 3^{2} \cdot 139 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1152\) \(=\)  \( 2^{7} \cdot 3^{2} \)
\( I_4 \)  \(=\) \(-1056\) \(=\)  \( - 2^{5} \cdot 3 \cdot 11 \)
\( I_6 \)  \(=\) \(-430020\) \(=\)  \( - 2^{2} \cdot 3^{2} \cdot 5 \cdot 2389 \)
\( I_{10} \)  \(=\) \(-320256\) \(=\)  \( - 2^{8} \cdot 3^{2} \cdot 139 \)
\( J_2 \)  \(=\) \(576\) \(=\)  \( 2^{6} \cdot 3^{2} \)
\( J_4 \)  \(=\) \(14000\) \(=\)  \( 2^{4} \cdot 5^{3} \cdot 7 \)
\( J_6 \)  \(=\) \(461988\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 41 \cdot 313 \)
\( J_8 \)  \(=\) \(17526272\) \(=\)  \( 2^{9} \cdot 34231 \)
\( J_{10} \)  \(=\) \(-80064\) \(=\)  \( - 2^{6} \cdot 3^{2} \cdot 139 \)
\( g_1 \)  \(=\) \(-110075314176/139\)
\( g_2 \)  \(=\) \(-4644864000/139\)
\( g_3 \)  \(=\) \(-266105088/139\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (-1 : -2 : 2),\, (-1 : -9 : 3)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (-1 : -2 : 2),\, (-1 : -9 : 3)\)
All points: \((1 : 0 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (-1 : 0 : 2),\, (-1 : 0 : 3)\)

magma: [C![-1,-9,3],C![-1,-2,2],C![0,-1,1],C![0,0,1],C![1,0,0]]; // minimal model
 
magma: [C![-1,0,3],C![-1,0,2],C![0,-1,1],C![0,1,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{8}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : -9 : 3) + (-1 : -2 : 2) - 2 \cdot(1 : 0 : 0)\) \((2x + z) (3x + z)\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2 - z^3\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(8\)
Generator $D_0$ Height Order
\((-1 : -9 : 3) + (-1 : -2 : 2) - 2 \cdot(1 : 0 : 0)\) \((2x + z) (3x + z)\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2 - z^3\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(8\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \((2x + z) (3x + z)\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2 - z^3\) \(0\) \(2\)
\((0 : 1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 + z^3\) \(0\) \(8\)

2-torsion field: 3.1.139.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 14.16690 \)
Tamagawa product: \( 16 \)
Torsion order:\( 16 \)
Leading coefficient: \( 0.885431 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(3\) \(6\) \(8\) \(1 - T\)
\(3\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 3 T^{2} )\)
\(139\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 12 T + 139 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.120.3 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);