Minimal equation
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, 0, 1, 2, 1], R![1, 1, 0, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, 0, 1, 2, 1]), R([1, 1, 0, 1]))
$y^2 + (x^3 + x + 1)y = x^5 + 2x^4 + x^3$
Invariants
magma: Conductor(LSeries(C)); Factorization($1);
|
|||||
\( N \) | = | \( 3319 \) | = | \( 3319 \) | |
magma: Discriminant(C); Factorization(Integers()!$1);
|
|||||
\( \Delta \) | = | \(3319\) | = | \( 3319 \) |
Igusa-Clebsch invariants
magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
Igusa invariants
magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
G2 invariants
magma: G2Invariants(C);
\( I_2 \) | = | \(136\) | = | \( 2^{3} \cdot 17 \) |
\( I_4 \) | = | \(14692\) | = | \( 2^{2} \cdot 3673 \) |
\( I_6 \) | = | \(304744\) | = | \( 2^{3} \cdot 11 \cdot 3463 \) |
\( I_{10} \) | = | \(13594624\) | = | \( 2^{12} \cdot 3319 \) |
\( J_2 \) | = | \(17\) | = | \( 17 \) |
\( J_4 \) | = | \(-141\) | = | \( -1 \cdot 3 \cdot 47 \) |
\( J_6 \) | = | \(205\) | = | \( 5 \cdot 41 \) |
\( J_8 \) | = | \(-4099\) | = | \( -1 \cdot 4099 \) |
\( J_{10} \) | = | \(3319\) | = | \( 3319 \) |
\( g_1 \) | = | \(1419857/3319\) | ||
\( g_2 \) | = | \(-692733/3319\) | ||
\( g_3 \) | = | \(59245/3319\) |
Automorphism group
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
|||||
\(\mathrm{Aut}(X)\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) | ||
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
|||||
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) |
Rational points
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
This curve is locally solvable everywhere.
magma: [C![-2,1,1],C![-2,8,1],C![-1,-2,2],C![-1,-1,2],C![-1,0,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-4,1],C![1,-1,0],C![1,0,0],C![1,1,1]];
Known rational points: (-2 : 1 : 1), (-2 : 8 : 1), (-1 : -2 : 2), (-1 : -1 : 2), (-1 : 0 : 1), (-1 : 1 : 1), (0 : -1 : 1), (0 : 0 : 1), (1 : -4 : 1), (1 : -1 : 0), (1 : 0 : 0), (1 : 1 : 1)
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
Number of rational Weierstrass points: \(0\)
Invariants of the Jacobian:
Analytic rank*: \(2\)
magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);
2-Selmer rank: \(2\)
magma: HasSquareSha(Jacobian(C));
Order of Ш*: square
Regulator: 0.00758549158724
Real period: 25.359353446269591634573982187
Tamagawa numbers: 1 (p = 3319)
magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);
Torsion: \(\mathrm{trivial}\)
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition
Simple over \(\overline{\Q}\)
Endomorphisms
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).