Properties

Label 32400.d.486000.1
Conductor $32400$
Discriminant $-486000$
Mordell-Weil group \(\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + x^2y = 15x^5 + 11x^4 - 12x^3 - x^2 + 14x + 6$ (homogenize, simplify)
$y^2 + x^2zy = 15x^5z + 11x^4z^2 - 12x^3z^3 - x^2z^4 + 14xz^5 + 6z^6$ (dehomogenize, simplify)
$y^2 = 60x^5 + 45x^4 - 48x^3 - 4x^2 + 56x + 24$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([6, 14, -1, -12, 11, 15]), R([0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![6, 14, -1, -12, 11, 15], R![0, 0, 1]);
 
sage: X = HyperellipticCurve(R([24, 56, -4, -48, 45, 60]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(32400\) \(=\) \( 2^{4} \cdot 3^{4} \cdot 5^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-486000\) \(=\) \( - 2^{4} \cdot 3^{5} \cdot 5^{3} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(12592\) \(=\)  \( 2^{4} \cdot 787 \)
\( I_4 \)  \(=\) \(1900\) \(=\)  \( 2^{2} \cdot 5^{2} \cdot 19 \)
\( I_6 \)  \(=\) \(7833900\) \(=\)  \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 26113 \)
\( I_{10} \)  \(=\) \(-8000\) \(=\)  \( - 2^{6} \cdot 5^{3} \)
\( J_2 \)  \(=\) \(18888\) \(=\)  \( 2^{3} \cdot 3 \cdot 787 \)
\( J_4 \)  \(=\) \(14862006\) \(=\)  \( 2 \cdot 3^{2} \cdot 353 \cdot 2339 \)
\( J_6 \)  \(=\) \(15589640196\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 13 \cdot 43 \cdot 774679 \)
\( J_8 \)  \(=\) \(18394475419503\) \(=\)  \( 3^{3} \cdot 19 \cdot 107 \cdot 16763 \cdot 19991 \)
\( J_{10} \)  \(=\) \(-486000\) \(=\)  \( - 2^{4} \cdot 3^{5} \cdot 5^{3} \)
\( g_1 \)  \(=\) \(-618306218132903936/125\)
\( g_2 \)  \(=\) \(-25757819662387264/125\)
\( g_3 \)  \(=\) \(-4291439937136144/375\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points: \((1 : 0 : 0),\, (-3 : -18 : 4)\)
Known points: \((1 : 0 : 0),\, (-3 : -18 : 4)\)
Known points: \((1 : 0 : 0),\, (-3 : 0 : 4)\)

magma: [C![-3,-18,4],C![1,0,0]]; // minimal model
 
magma: [C![-3,0,4],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(3x^2 + xz - z^2\) \(=\) \(0,\) \(3y\) \(=\) \(-8xz^2 - 7z^3\) \(0.161598\) \(\infty\)
\((-3 : -18 : 4) - (1 : 0 : 0)\) \(4x + 3z\) \(=\) \(0,\) \(32y\) \(=\) \(-9z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(3x^2 + xz - z^2\) \(=\) \(0,\) \(3y\) \(=\) \(-8xz^2 - 7z^3\) \(0.161598\) \(\infty\)
\((-3 : -18 : 4) - (1 : 0 : 0)\) \(4x + 3z\) \(=\) \(0,\) \(32y\) \(=\) \(-9z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(3x^2 + xz - z^2\) \(=\) \(0,\) \(3y\) \(=\) \(x^2z - 16xz^2 - 14z^3\) \(0.161598\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x + 3z\) \(=\) \(0,\) \(32y\) \(=\) \(x^2z - 18z^3\) \(0\) \(2\)

2-torsion field: 4.2.8640.3

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(2\)
Regulator: \( 0.161598 \)
Real period: \( 11.36554 \)
Tamagawa product: \( 4 \)
Torsion order:\( 2 \)
Leading coefficient: \( 1.836656 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(4\) \(1\) \(1 - T + 2 T^{2}\)
\(3\) \(4\) \(5\) \(2\) \(1 + T\)
\(5\) \(2\) \(3\) \(2\) \(1 + 5 T^{2}\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.30.3 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);