# Properties

 Label 32400.d Conductor $32400$ Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\End(J) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

## Genus 2 curves in isogeny class 32400.d

Label Equation
32400.d.486000.1 $$y^2 + x^2y = 15x^5 + 11x^4 - 12x^3 - x^2 + 14x + 6$$

## L-function data

Analytic rank:$$1$$
Mordell-Weil rank:$$1$$

Prime L-Factor
$$2$$$$1 - T + 2 T^{2}$$
$$3$$$$1 + T$$
$$5$$$$1 + 5 T^{2}$$

Good L-factors:
Prime L-Factor
$$7$$$$1 + 8 T^{2} + 49 T^{4}$$
$$11$$$$1 + 2 T - 8 T^{2} + 22 T^{3} + 121 T^{4}$$
$$13$$$$1 + 2 T - 8 T^{2} + 26 T^{3} + 169 T^{4}$$
$$17$$$$1 + 3 T + 8 T^{2} + 51 T^{3} + 289 T^{4}$$
$$19$$$$1 + 7 T + 42 T^{2} + 133 T^{3} + 361 T^{4}$$
$$23$$$$( 1 + 23 T^{2} )( 1 + 3 T + 23 T^{2} )$$
$$29$$$$1 - 10 T + 76 T^{2} - 290 T^{3} + 841 T^{4}$$
$\cdots$$\cdots$

## Sato-Tate group

$$\mathrm{ST} =$$ $\mathrm{USp}(4)$

## Decomposition of the Jacobian

Simple over $$\overline{\Q}$$

## Endomorphisms of the Jacobian

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism algebra over $$\Q$$:

 $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.