Properties

Label 3072.a.196608.2
Conductor $3072$
Discriminant $196608$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $N(\mathrm{U}(1)\times\mathrm{SU}(2))$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\C \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathsf{CM} \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 = 6x^6 - 13x^4 + 9x^2 - 2$ (homogenize, simplify)
$y^2 = 6x^6 - 13x^4z^2 + 9x^2z^4 - 2z^6$ (dehomogenize, simplify)
$y^2 = 6x^6 - 13x^4 + 9x^2 - 2$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-2, 0, 9, 0, -13, 0, 6]), R([]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-2, 0, 9, 0, -13, 0, 6], R![]);
 
sage: X = HyperellipticCurve(R([-2, 0, 9, 0, -13, 0, 6]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(3072\) \(=\) \( 2^{10} \cdot 3 \)
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(3072,2),R![1]>*])); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(196608\) \(=\) \( 2^{16} \cdot 3 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(2376\) \(=\)  \( 2^{3} \cdot 3^{3} \cdot 11 \)
\( I_4 \)  \(=\) \(321\) \(=\)  \( 3 \cdot 107 \)
\( I_6 \)  \(=\) \(254043\) \(=\)  \( 3^{3} \cdot 97^{2} \)
\( I_{10} \)  \(=\) \(24\) \(=\)  \( 2^{3} \cdot 3 \)
\( J_2 \)  \(=\) \(9504\) \(=\)  \( 2^{5} \cdot 3^{3} \cdot 11 \)
\( J_4 \)  \(=\) \(3760160\) \(=\)  \( 2^{5} \cdot 5 \cdot 71 \cdot 331 \)
\( J_6 \)  \(=\) \(1981759488\) \(=\)  \( 2^{14} \cdot 3 \cdot 23 \cdot 1753 \)
\( J_8 \)  \(=\) \(1173959737088\) \(=\)  \( 2^{8} \cdot 163 \cdot 28133621 \)
\( J_{10} \)  \(=\) \(196608\) \(=\)  \( 2^{16} \cdot 3 \)
\( g_1 \)  \(=\) \(394394593494528\)
\( g_2 \)  \(=\) \(16418157695280\)
\( g_3 \)  \(=\) \(910463659776\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((-1 : 0 : 1),\, (1 : 0 : 1)\)
All points: \((-1 : 0 : 1),\, (1 : 0 : 1)\)
All points: \((-1 : 0 : 1),\, (1 : 0 : 1)\)

magma: [C![-1,0,1],C![1,0,1]]; // minimal model
 
magma: [C![-1,0,1],C![1,0,1]]; // simplified model
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((-1 : 0 : 1) + (1 : 0 : 1) - D_\infty\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((-1 : 0 : 1) + (1 : 0 : 1) - D_\infty\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((-1 : 0 : 1) + (1 : 0 : 1) - D_\infty\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)

2-torsion field: \(\Q(\sqrt{2}, \sqrt{3})\)

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 10.49953 \)
Tamagawa product: \( 1 \)
Torsion order:\( 4 \)
Leading coefficient: \( 0.656220 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(10\) \(16\) \(1\) \(1\)
\(3\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 3 T^{2} )\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.180.3 yes
\(3\) 3.270.2 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $N(\mathrm{U}(1)\times\mathrm{SU}(2))$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{U}(1)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 32.a
  Elliptic curve isogeny class 96.a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{-1}) \) with defining polynomial \(x^{2} + 1\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an order of index \(4\) in \(\Z \times \Z [\sqrt{-1}]\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q(\sqrt{-1}) \)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\R \times \C\)

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);