Properties

Label 301401.a.301401.1
Conductor $301401$
Discriminant $301401$
Mordell-Weil group trivial
Sato-Tate group $E_6$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{CM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = -x^6 - x^5 + 3x^4 + 4x^3 - 3x^2 - 4x - 1$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = -x^6 - x^5z + 3x^4z^2 + 4x^3z^3 - 3x^2z^4 - 4xz^5 - z^6$ (dehomogenize, simplify)
$y^2 = -3x^6 - 4x^5 + 14x^4 + 18x^3 - 11x^2 - 14x - 3$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, -4, -3, 4, 3, -1, -1]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, -4, -3, 4, 3, -1, -1], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([-3, -14, -11, 18, 14, -4, -3]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(301401\) \(=\) \( 3^{4} \cdot 61^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(301401\) \(=\) \( 3^{4} \cdot 61^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(2244\) \(=\)  \( 2^{2} \cdot 3 \cdot 11 \cdot 17 \)
\( I_4 \)  \(=\) \(275049\) \(=\)  \( 3^{3} \cdot 61 \cdot 167 \)
\( I_6 \)  \(=\) \(158130117\) \(=\)  \( 3^{3} \cdot 61 \cdot 67 \cdot 1433 \)
\( I_{10} \)  \(=\) \(38579328\) \(=\)  \( 2^{7} \cdot 3^{4} \cdot 61^{2} \)
\( J_2 \)  \(=\) \(561\) \(=\)  \( 3 \cdot 11 \cdot 17 \)
\( J_4 \)  \(=\) \(1653\) \(=\)  \( 3 \cdot 19 \cdot 29 \)
\( J_6 \)  \(=\) \(-1643\) \(=\)  \( - 31 \cdot 53 \)
\( J_8 \)  \(=\) \(-913533\) \(=\)  \( - 3 \cdot 304511 \)
\( J_{10} \)  \(=\) \(301401\) \(=\)  \( 3^{4} \cdot 61^{2} \)
\( g_1 \)  \(=\) \(686008169121/3721\)
\( g_2 \)  \(=\) \(3603100853/3721\)
\( g_3 \)  \(=\) \(-57454067/33489\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_6$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\Q_{2}$ and $\Q_{5}$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: trivial

magma: MordellWeilGroupGenus2(Jacobian(C));
 

2-torsion field: 9.9.27380039270784201.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(0\)
Regulator: \( 1 \)
Real period: \( 6.900558 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 6.900558 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(4\) \(4\) \(1\) \(1 + 3 T^{2}\)
\(61\) \(2\) \(2\) \(1\) \(1 + 13 T + 61 T^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.80.1 no
\(3\) 3.480.12 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $E_6$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) 6.6.5541396330861.1 with defining polynomial:
  \(x^{6} - 183 x^{4} - 244 x^{3} + 1647 x^{2} + 549 x - 2745\)

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -\frac{448847426817}{507012500} b^{5} - \frac{3717968867361}{2028050000} b^{4} + \frac{40106532132459}{253506250} b^{3} + \frac{1102504970084661}{2028050000} b^{2} - \frac{673019993223549}{2028050000} b - \frac{475445034877491}{405610000}\)
  \(g_6 = -\frac{60422321890130337}{50701250000} b^{5} - \frac{500673379794933771}{202805000000} b^{4} + \frac{21595984719044897871}{101402500000} b^{3} + \frac{148446854122001801571}{202805000000} b^{2} - \frac{90546645136674896739}{202805000000} b - \frac{32026060517213501163}{20280500000}\)
   Conductor norm: 1

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\C\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 6.6.5541396330861.1 with defining polynomial \(x^{6} - 183 x^{4} - 244 x^{3} + 1647 x^{2} + 549 x - 2745\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{61}) \) with generator \(\frac{441}{202805} a^{5} - \frac{714}{202805} a^{4} - \frac{79547}{202805} a^{3} + \frac{11529}{202805} a^{2} + \frac{707661}{202805} a + \frac{16285}{40561}\) with minimal polynomial \(x^{2} - x - 15\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.3.301401.2 with generator \(-\frac{88}{12945} a^{5} - \frac{21}{4315} a^{4} + \frac{5402}{4315} a^{3} + \frac{31603}{12945} a^{2} - \frac{48861}{4315} a - \frac{2440}{863}\) with minimal polynomial \(x^{3} - 183 x - 793\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);