Properties

Label 294.a.8232.1
Conductor 294
Discriminant 8232
Mordell-Weil group \(\Z/{12}\Z\)
Sato-Tate group $G_{3,3}$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -2x^4 + 4x^2 - 9x - 14$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -2x^4z^2 + 4x^2z^4 - 9xz^5 - 14z^6$ (dehomogenize, simplify)
$y^2 = x^6 - 8x^4 + 2x^3 + 16x^2 - 36x - 55$ (minimize, homogenize)

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-14, -9, 4, 0, -2], R![1, 0, 0, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-14, -9, 4, 0, -2]), R([1, 0, 0, 1]));
 
magma: X,pi:= SimplifiedModel(C);
 
sage: X = HyperellipticCurve(R([-55, -36, 16, 2, -8, 0, 1]))
 

Invariants

Conductor: \( N \)  =  \(294\) = \( 2 \cdot 3 \cdot 7^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  =  \(8232\) = \( 2^{3} \cdot 3 \cdot 7^{3} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  = \(15272\) =  \( 2^{3} \cdot 23 \cdot 83 \)
\( I_4 \)  = \(47140\) =  \( 2^{2} \cdot 5 \cdot 2357 \)
\( I_6 \)  = \(237965608\) =  \( 2^{3} \cdot 239 \cdot 124459 \)
\( I_{10} \)  = \(33718272\) =  \( 2^{15} \cdot 3 \cdot 7^{3} \)
\( J_2 \)  = \(1909\) =  \( 23 \cdot 83 \)
\( J_4 \)  = \(151354\) =  \( 2 \cdot 7 \cdot 19 \cdot 569 \)
\( J_6 \)  = \(15951264\) =  \( 2^{5} \cdot 3 \cdot 7^{2} \cdot 3391 \)
\( J_8 \)  = \(1885732415\) =  \( 5 \cdot 7^{2} \cdot 7696867 \)
\( J_{10} \)  = \(8232\) =  \( 2^{3} \cdot 3 \cdot 7^{3} \)
\( g_1 \)  = \(25353016669288549/8232\)
\( g_2 \)  = \(75211396489919/588\)
\( g_3 \)  = \(49431027484/7\)

magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (-2 : 3 : 1),\, (-2 : 4 : 1)\)

magma: [C![-2,3,1],C![-2,4,1],C![1,-1,0],C![1,0,0]];
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian:

Group structure: \(\Z/{12}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0\) \(12\)

2-torsion field: 8.0.12446784.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 7.150511 \)
Tamagawa product: \( 3 \)
Torsion order:\( 12 \)
Leading coefficient: \( 0.148968 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor
\(2\) \(3\) \(1\) \(1\) \(( 1 + T )( 1 + T + 2 T^{2} )\)
\(3\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 2 T + 3 T^{2} )\)
\(7\) \(3\) \(2\) \(3\) \(( 1 - T )( 1 + T )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $G_{3,3}$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curves:
  Elliptic curve 14.a6
  Elliptic curve 21.a6

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).