Properties

Label 293712.a.293712.1
Conductor $293712$
Discriminant $-293712$
Mordell-Weil group \(\Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + xy = -13x^6 - 12x^5 + 63x^4 + 23x^3 - 81x^2 + 27x - 6$ (homogenize, simplify)
$y^2 + xz^2y = -13x^6 - 12x^5z + 63x^4z^2 + 23x^3z^3 - 81x^2z^4 + 27xz^5 - 6z^6$ (dehomogenize, simplify)
$y^2 = -52x^6 - 48x^5 + 252x^4 + 92x^3 - 323x^2 + 108x - 24$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-6, 27, -81, 23, 63, -12, -13]), R([0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-6, 27, -81, 23, 63, -12, -13], R![0, 1]);
 
sage: X = HyperellipticCurve(R([-24, 108, -323, 92, 252, -48, -52]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(293712\) \(=\) \( 2^{4} \cdot 3 \cdot 29 \cdot 211 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-293712\) \(=\) \( - 2^{4} \cdot 3 \cdot 29 \cdot 211 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(211560\) \(=\)  \( 2^{3} \cdot 3 \cdot 5 \cdot 41 \cdot 43 \)
\( I_4 \)  \(=\) \(4586651160\) \(=\)  \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 67 \cdot 6269 \)
\( I_6 \)  \(=\) \(198747415326036\) \(=\)  \( 2^{2} \cdot 3 \cdot 859 \cdot 10211 \cdot 1888247 \)
\( I_{10} \)  \(=\) \(-1174848\) \(=\)  \( - 2^{6} \cdot 3 \cdot 29 \cdot 211 \)
\( J_2 \)  \(=\) \(105780\) \(=\)  \( 2^{2} \cdot 3 \cdot 5 \cdot 41 \cdot 43 \)
\( J_4 \)  \(=\) \(-298216510\) \(=\)  \( - 2 \cdot 5 \cdot 83 \cdot 359297 \)
\( J_6 \)  \(=\) \(3118654812496\) \(=\)  \( 2^{4} \cdot 17 \cdot 53 \cdot 59 \cdot 3666659 \)
\( J_8 \)  \(=\) \(60239554807311695\) \(=\)  \( 5 \cdot 12047910961462339 \)
\( J_{10} \)  \(=\) \(-293712\) \(=\)  \( - 2^{4} \cdot 3 \cdot 29 \cdot 211 \)
\( g_1 \)  \(=\) \(-275915803478661696600000/6119\)
\( g_2 \)  \(=\) \(7353619157135452365000/6119\)
\( g_3 \)  \(=\) \(-726997965742565986800/6119\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(13x^2 + 12xz - 24z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(13x^2 + 12xz - 24z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(13x^2 + 12xz - 24z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)

2-torsion field: 6.2.117268848252.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(3\)
Regulator: \( 1 \)
Real period: \( 0.211647 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 0.846589 \)
Analytic order of Ш: \( 16 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(4\) \(1\) \(1 - T + 2 T^{2}\)
\(3\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 3 T^{2} )\)
\(29\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 10 T + 29 T^{2} )\)
\(211\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 4 T + 211 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.15.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);