Properties

Label 2900.a.290000.1
Conductor $2900$
Discriminant $290000$
Mordell-Weil group \(\Z \oplus \Z/{6}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x)y = -4x^4 + 17x^2 - 29$ (homogenize, simplify)
$y^2 + (x^3 + xz^2)y = -4x^4z^2 + 17x^2z^4 - 29z^6$ (dehomogenize, simplify)
$y^2 = x^6 - 14x^4 + 69x^2 - 116$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-29, 0, 17, 0, -4]), R([0, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-29, 0, 17, 0, -4], R![0, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([-116, 0, 69, 0, -14, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(2900\) \(=\) \( 2^{2} \cdot 5^{2} \cdot 29 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(290000\) \(=\) \( 2^{4} \cdot 5^{4} \cdot 29 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(10824\) \(=\)  \( 2^{3} \cdot 3 \cdot 11 \cdot 41 \)
\( I_4 \)  \(=\) \(6384\) \(=\)  \( 2^{4} \cdot 3 \cdot 7 \cdot 19 \)
\( I_6 \)  \(=\) \(22368156\) \(=\)  \( 2^{2} \cdot 3 \cdot 883 \cdot 2111 \)
\( I_{10} \)  \(=\) \(1160000\) \(=\)  \( 2^{6} \cdot 5^{4} \cdot 29 \)
\( J_2 \)  \(=\) \(5412\) \(=\)  \( 2^{2} \cdot 3 \cdot 11 \cdot 41 \)
\( J_4 \)  \(=\) \(1219342\) \(=\)  \( 2 \cdot 17 \cdot 35863 \)
\( J_6 \)  \(=\) \(366049600\) \(=\)  \( 2^{6} \cdot 5^{2} \cdot 7^{3} \cdot 23 \cdot 29 \)
\( J_8 \)  \(=\) \(123566380559\) \(=\)  \( 37 \cdot 83 \cdot 40236529 \)
\( J_{10} \)  \(=\) \(290000\) \(=\)  \( 2^{4} \cdot 5^{4} \cdot 29 \)
\( g_1 \)  \(=\) \(290180989287807552/18125\)
\( g_2 \)  \(=\) \(12080333233372536/18125\)
\( g_3 \)  \(=\) \(924267161664/25\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-2 : 5 : 1)\) \((2 : -5 : 1)\) \((-3 : 10 : 1)\) \((3 : -10 : 1)\)
\((-3 : 20 : 1)\) \((3 : -20 : 1)\)
All points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-2 : 5 : 1)\) \((2 : -5 : 1)\) \((-3 : 10 : 1)\) \((3 : -10 : 1)\)
\((-3 : 20 : 1)\) \((3 : -20 : 1)\)
All points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-2 : 0 : 1)\) \((2 : 0 : 1)\) \((-3 : -10 : 1)\) \((-3 : 10 : 1)\)
\((3 : -10 : 1)\) \((3 : 10 : 1)\)

magma: [C![-3,10,1],C![-3,20,1],C![-2,5,1],C![1,-1,0],C![1,0,0],C![2,-5,1],C![3,-20,1],C![3,-10,1]]; // minimal model
 
magma: [C![-3,-10,1],C![-3,10,1],C![-2,0,1],C![1,-1,0],C![1,1,0],C![2,0,1],C![3,-10,1],C![3,10,1]]; // simplified model
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{6}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-2 : 5 : 1) - (1 : -1 : 0)\) \(z (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(5z^3\) \(0.146114\) \(\infty\)
\((-3 : 10 : 1) + (3 : -20 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - 3z) (x + 3z)\) \(=\) \(0,\) \(y\) \(=\) \(-5xz^2 - 5z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\((-2 : 5 : 1) - (1 : -1 : 0)\) \(z (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(5z^3\) \(0.146114\) \(\infty\)
\((-3 : 10 : 1) + (3 : -20 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - 3z) (x + 3z)\) \(=\) \(0,\) \(y\) \(=\) \(-5xz^2 - 5z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\((-2 : 0 : 1) - (1 : -1 : 0)\) \(z (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2 + 10z^3\) \(0.146114\) \(\infty\)
\((-3 : -10 : 1) + (3 : -10 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - 3z) (x + 3z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 9xz^2 - 10z^3\) \(0\) \(6\)

2-torsion field: 4.0.1856.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(2\)
Regulator: \( 0.146114 \)
Real period: \( 8.037577 \)
Tamagawa product: \( 12 \)
Torsion order:\( 6 \)
Leading coefficient: \( 0.391468 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(4\) \(3\) \(1 + T + 2 T^{2}\)
\(5\) \(2\) \(4\) \(4\) \(( 1 + T )^{2}\)
\(29\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 6 T + 29 T^{2} )\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.90.3 yes
\(3\) 3.720.4 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 20.a
  Elliptic curve isogeny class 145.a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);