Properties

Label 270438.a.270438.1
Conductor $270438$
Discriminant $-270438$
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -x^6 - 4x^5 + 27x^3 + 26x^2 - 47x - 59$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -x^6 - 4x^5z + 27x^3z^3 + 26x^2z^4 - 47xz^5 - 59z^6$ (dehomogenize, simplify)
$y^2 = -3x^6 - 16x^5 + 110x^3 + 104x^2 - 188x - 235$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-59, -47, 26, 27, 0, -4, -1]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-59, -47, 26, 27, 0, -4, -1], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-235, -188, 104, 110, 0, -16, -3]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(270438\) \(=\) \( 2 \cdot 3 \cdot 7 \cdot 47 \cdot 137 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-270438\) \(=\) \( - 2 \cdot 3 \cdot 7 \cdot 47 \cdot 137 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(11860\) \(=\)  \( 2^{2} \cdot 5 \cdot 593 \)
\( I_4 \)  \(=\) \(9607321\) \(=\)  \( 227 \cdot 42323 \)
\( I_6 \)  \(=\) \(28052443421\) \(=\)  \( 151 \cdot 185777771 \)
\( I_{10} \)  \(=\) \(-34616064\) \(=\)  \( - 2^{8} \cdot 3 \cdot 7 \cdot 47 \cdot 137 \)
\( J_2 \)  \(=\) \(2965\) \(=\)  \( 5 \cdot 593 \)
\( J_4 \)  \(=\) \(-34004\) \(=\)  \( - 2^{2} \cdot 8501 \)
\( J_6 \)  \(=\) \(416332\) \(=\)  \( 2^{2} \cdot 7 \cdot 14869 \)
\( J_8 \)  \(=\) \(19538091\) \(=\)  \( 3^{4} \cdot 31^{2} \cdot 251 \)
\( J_{10} \)  \(=\) \(-270438\) \(=\)  \( - 2 \cdot 3 \cdot 7 \cdot 47 \cdot 137 \)
\( g_1 \)  \(=\) \(-229151913706853125/270438\)
\( g_2 \)  \(=\) \(443173828089250/135219\)
\( g_3 \)  \(=\) \(-261433449050/19317\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\Q_{2}$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z\) (conditional)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 + xz - 5z^2\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 + 2z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 + xz - 5z^2\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 + 2z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 + xz - 5z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 6xz^2 + 5z^3\) \(0\) \(2\)

2-torsion field: 6.2.24573935179584.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)   (lower bound)
2-Selmer rank:\(3\)
Regulator: \( 1.0 \)
Real period: \( 1.418182 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 5.672729 \)
Analytic order of Ш: \( 16 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - T + 2 T^{2} )\)
\(3\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - T + 3 T^{2} )\)
\(7\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 7 T^{2} )\)
\(47\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 8 T + 47 T^{2} )\)
\(137\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 18 T + 137 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.15.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);