Minimal equation
Minimal equation
Simplified equation
| $y^2 + (x^2 + x)y = x^5 - x^4 - 3x^2 + 3x - 1$ | (homogenize, simplify) |
| $y^2 + (x^2z + xz^2)y = x^5z - x^4z^2 - 3x^2z^4 + 3xz^5 - z^6$ | (dehomogenize, simplify) |
| $y^2 = 4x^5 - 3x^4 + 2x^3 - 11x^2 + 12x - 4$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(2646\) | \(=\) | \( 2 \cdot 3^{3} \cdot 7^{2} \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(71442\) | \(=\) | \( 2 \cdot 3^{6} \cdot 7^{2} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(236\) | \(=\) | \( 2^{2} \cdot 59 \) |
| \( I_4 \) | \(=\) | \(505\) | \(=\) | \( 5 \cdot 101 \) |
| \( I_6 \) | \(=\) | \(18451\) | \(=\) | \( 18451 \) |
| \( I_{10} \) | \(=\) | \(37632\) | \(=\) | \( 2^{8} \cdot 3 \cdot 7^{2} \) |
| \( J_2 \) | \(=\) | \(177\) | \(=\) | \( 3 \cdot 59 \) |
| \( J_4 \) | \(=\) | \(1116\) | \(=\) | \( 2^{2} \cdot 3^{2} \cdot 31 \) |
| \( J_6 \) | \(=\) | \(15228\) | \(=\) | \( 2^{2} \cdot 3^{4} \cdot 47 \) |
| \( J_8 \) | \(=\) | \(362475\) | \(=\) | \( 3^{4} \cdot 5^{2} \cdot 179 \) |
| \( J_{10} \) | \(=\) | \(71442\) | \(=\) | \( 2 \cdot 3^{6} \cdot 7^{2} \) |
| \( g_1 \) | \(=\) | \(714924299/294\) | ||
| \( g_2 \) | \(=\) | \(12733498/147\) | ||
| \( g_3 \) | \(=\) | \(327214/49\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2^2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2^2$ |
|
Rational points
Number of rational Weierstrass points: \(2\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{4}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - 2 \cdot(1 : 0 : 0)\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2 + 2z^3\) | \(0\) | \(4\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - 2 \cdot(1 : 0 : 0)\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2 + 2z^3\) | \(0\) | \(4\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - 2 \cdot(1 : 0 : 0)\) | \(x^2 - xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^2z - xz^2 + 4z^3\) | \(0\) | \(4\) |
BSD invariants
| Hasse-Weil conjecture: | verified |
| Analytic rank: | \(0\) |
| Mordell-Weil rank: | \(0\) |
| 2-Selmer rank: | \(1\) |
| Regulator: | \( 1 \) |
| Real period: | \( 5.523621 \) |
| Tamagawa product: | \( 2 \) |
| Torsion order: | \( 4 \) |
| Leading coefficient: | \( 0.690452 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(1\) | \(1\) | \(1\) | \(-1^*\) | \(( 1 - T )( 1 + T + 2 T^{2} )\) | yes | |
| \(3\) | \(3\) | \(6\) | \(2\) | \(1\) | \(1 - T\) | yes | |
| \(7\) | \(2\) | \(2\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + T )\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.90.3 | yes |
| \(3\) | 3.720.5 | no |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 21.a
Elliptic curve isogeny class 126.b
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).