Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
26384.a.422144.1 26384.a \( 2^{4} \cdot 17 \cdot 97 \) $1$ $\mathsf{trivial}$ \(\Q\) $[112,-452,-38388,1649]$ $[224,3296,224000,9828096,422144]$ $[2202927104/1649,144707584/1649,43904000/1649]$ $y^2 = x^5 + x^4 + 2x^3 + 7x^2 + 5x + 1$
26384.b.422144.1 26384.b \( 2^{4} \cdot 17 \cdot 97 \) $0$ $\Z/3\Z$ \(\Q\) $[66,708,10950,-1649]$ $[132,-1162,-3316,-446989,-422144]$ $[-156541572/1649,20879397/3298,902781/6596]$ $y^2 = x^5 - 3x^3 - 5x^2 - 3x - 1$
26384.c.422144.1 26384.c \( 2^{4} \cdot 17 \cdot 97 \) $1$ $\Z/3\Z$ \(\Q\) $[202,688,53546,-1649]$ $[404,4966,-22244,-8411933,-422144]$ $[-42040402004/1649,-2558237383/3298,56727761/6596]$ $y^2 = x^6 - 2x^4 - x^3 + x^2 + 2x + 1$
26384.d.422144.1 26384.d \( 2^{4} \cdot 17 \cdot 97 \) $2$ $\mathsf{trivial}$ \(\Q\) $[24,180,1224,-1649]$ $[48,-384,-2048,-61440,-422144]$ $[-995328/1649,165888/1649,18432/1649]$ $y^2 = x^5 - x^4 + x^2 - x + 1$
  displayed columns for results