Learn more

Refine search


Results (5 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
26244.a.52488.1 26244.a \( 2^{2} \cdot 3^{8} \) $0$ $\Z/3\Z$ \(\Q\) $[2668,-999,-833661,27648]$ $[2001,167208,18650704,2340385860,52488]$ $[\frac{132016790288107}{216},\frac{2067394289221}{81},\frac{1037186631482}{729}]$ $y^2 + (x^3 + x + 1)y = -x^6 + 4x^4 + 20x^3 + 29x^2 + 16x + 3$
26244.b.52488.1 26244.b \( 2^{2} \cdot 3^{8} \) $1$ $\Z/3\Z$ \(\Q\) $[76,7641,411651,27648]$ $[57,-2730,-108572,-3410376,52488]$ $[\frac{2476099}{216},-\frac{3120845}{324},-\frac{9798623}{1458}]$ $y^2 + (x^3 + x + 1)y = -2x^4 + x^3 - 4x^2 + x - 2$
26244.c.157464.1 26244.c \( 2^{2} \cdot 3^{8} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[60,945,2295,82944]$ $[45,-270,3780,24300,157464]$ $[\frac{9375}{8},-\frac{625}{4},\frac{875}{18}]$ $y^2 + (x^3 + 1)y = 2x^3$
26244.d.314928.1 26244.d \( 2^{2} \cdot 3^{8} \) $1$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[24,189,1107,-162]$ $[72,-918,-3024,-265113,-314928]$ $[-6144,1088,\frac{448}{9}]$ $y^2 + y = x^6 - 2x^3$
26244.e.472392.1 26244.e \( 2^{2} \cdot 3^{8} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[356,3969,419553,248832]$ $[267,1482,-2884,-741588,472392]$ $[\frac{5584059449}{1944},\frac{174127343}{2916},-\frac{5711041}{13122}]$ $y^2 + (x^3 + 1)y = 2$
  displayed columns for results