Properties

Label 25570.b.255700.1
Conductor $25570$
Discriminant $255700$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = x^5 - x^4 - 5x^3 + 4x^2 + 4x - 3$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = x^5z - x^4z^2 - 5x^3z^3 + 4x^2z^4 + 4xz^5 - 3z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 4x^5 - 4x^4 - 18x^3 + 16x^2 + 16x - 11$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-3, 4, 4, -5, -1, 1]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-3, 4, 4, -5, -1, 1], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-11, 16, 16, -18, -4, 4, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(25570\) \(=\) \( 2 \cdot 5 \cdot 2557 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(255700\) \(=\) \( 2^{2} \cdot 5^{2} \cdot 2557 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(4084\) \(=\)  \( 2^{2} \cdot 1021 \)
\( I_4 \)  \(=\) \(60001\) \(=\)  \( 29 \cdot 2069 \)
\( I_6 \)  \(=\) \(62743873\) \(=\)  \( 62743873 \)
\( I_{10} \)  \(=\) \(32729600\) \(=\)  \( 2^{9} \cdot 5^{2} \cdot 2557 \)
\( J_2 \)  \(=\) \(1021\) \(=\)  \( 1021 \)
\( J_4 \)  \(=\) \(40935\) \(=\)  \( 3 \cdot 5 \cdot 2729 \)
\( J_6 \)  \(=\) \(2301329\) \(=\)  \( 103 \cdot 22343 \)
\( J_8 \)  \(=\) \(168495671\) \(=\)  \( 8893 \cdot 18947 \)
\( J_{10} \)  \(=\) \(255700\) \(=\)  \( 2^{2} \cdot 5^{2} \cdot 2557 \)
\( g_1 \)  \(=\) \(1109503586489101/255700\)
\( g_2 \)  \(=\) \(8713688220807/51140\)
\( g_3 \)  \(=\) \(2398999704089/255700\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((1 : 0 : 1)\) \((1 : -2 : 1)\) \((3 : -5 : 2)\)
\((-3 : 12 : 1)\) \((-3 : 14 : 1)\) \((-5 : -24 : 3)\) \((3 : -30 : 2)\) \((-11 : -75 : 6)\) \((-5 : 122 : 3)\)
\((-11 : 1190 : 6)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((1 : 0 : 1)\) \((1 : -2 : 1)\) \((3 : -5 : 2)\)
\((-3 : 12 : 1)\) \((-3 : 14 : 1)\) \((-5 : -24 : 3)\) \((3 : -30 : 2)\) \((-11 : -75 : 6)\) \((-5 : 122 : 3)\)
\((-11 : 1190 : 6)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : 0 : 1)\) \((1 : -2 : 1)\) \((1 : 2 : 1)\) \((-3 : -2 : 1)\)
\((-3 : 2 : 1)\) \((3 : -25 : 2)\) \((3 : 25 : 2)\) \((-5 : -146 : 3)\) \((-5 : 146 : 3)\) \((-11 : -1265 : 6)\)
\((-11 : 1265 : 6)\)

magma: [C![-11,-75,6],C![-11,1190,6],C![-5,-24,3],C![-5,122,3],C![-3,12,1],C![-3,14,1],C![-1,0,1],C![1,-2,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![3,-30,2],C![3,-5,2]]; // minimal model
 
magma: [C![-11,-1265,6],C![-11,1265,6],C![-5,-146,3],C![-5,146,3],C![-3,-2,1],C![-3,2,1],C![-1,0,1],C![1,-2,1],C![1,-1,0],C![1,1,0],C![1,2,1],C![3,-25,2],C![3,25,2]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2z^3\) \(0.448852\) \(\infty\)
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.034669\) \(\infty\)
Generator $D_0$ Height Order
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2z^3\) \(0.448852\) \(\infty\)
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.034669\) \(\infty\)
Generator $D_0$ Height Order
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 3z^3\) \(0.448852\) \(\infty\)
\((-1 : 0 : 1) - (1 : 1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.034669\) \(\infty\)

2-torsion field: 5.1.40912.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.015541 \)
Real period: \( 15.87321 \)
Tamagawa product: \( 4 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.986763 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 - T + 2 T^{2} )\)
\(5\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 + 4 T + 5 T^{2} )\)
\(2557\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 7 T + 2557 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);