Properties

Label 2512.a.160768.1
Conductor 2512
Discriminant -160768
Mordell-Weil group \(\Z/{13}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x + 1)y = x^6 + 3x^4 + x^3 + 2x^2$ (homogenize, simplify)
$y^2 + (xz^2 + z^3)y = x^6 + 3x^4z^2 + x^3z^3 + 2x^2z^4$ (dehomogenize, simplify)
$y^2 = 4x^6 + 12x^4 + 4x^3 + 9x^2 + 2x + 1$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, 2, 1, 3, 0, 1]), R([1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, 2, 1, 3, 0, 1], R![1, 1]);
 
sage: X = HyperellipticCurve(R([1, 2, 9, 4, 12, 0, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(2512\) \(=\) \( 2^{4} \cdot 157 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-160768\) \(=\) \( - 2^{10} \cdot 157 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(-2592\) \(=\)  \( - 2^{5} \cdot 3^{4} \)
\( I_4 \)  \(=\) \(90432\) \(=\)  \( 2^{6} \cdot 3^{2} \cdot 157 \)
\( I_6 \)  \(=\) \(-74285568\) \(=\)  \( - 2^{9} \cdot 3^{2} \cdot 7^{3} \cdot 47 \)
\( I_{10} \)  \(=\) \(-658505728\) \(=\)  \( - 2^{22} \cdot 157 \)
\( J_2 \)  \(=\) \(-324\) \(=\)  \( - 2^{2} \cdot 3^{4} \)
\( J_4 \)  \(=\) \(3432\) \(=\)  \( 2^{3} \cdot 3 \cdot 11 \cdot 13 \)
\( J_6 \)  \(=\) \(-34544\) \(=\)  \( - 2^{4} \cdot 17 \cdot 127 \)
\( J_8 \)  \(=\) \(-146592\) \(=\)  \( - 2^{5} \cdot 3^{2} \cdot 509 \)
\( J_{10} \)  \(=\) \(-160768\) \(=\)  \( - 2^{10} \cdot 157 \)
\( g_1 \)  \(=\) \(3486784401/157\)
\( g_2 \)  \(=\) \(227988189/314\)
\( g_3 \)  \(=\) \(14165199/628\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1)\)

magma: [C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,1,0]];
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{13}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - z^3\) \(0\) \(13\)

2-torsion field: 6.0.160768.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(0\)
Regulator: \( 1 \)
Real period: \( 10.60147 \)
Tamagawa product: \( 13 \)
Torsion order:\( 13 \)
Leading coefficient: \( 0.815498 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(10\) \(13\) \(1 - T\)
\(157\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 11 T + 157 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).