Properties

Label 249939.a.249939.1
Conductor $249939$
Discriminant $-249939$
Mordell-Weil group \(\Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + x^2y = x^5 + x^4 - 45x^3 - 10x^2 + 541x - 357$ (homogenize, simplify)
$y^2 + x^2zy = x^5z + x^4z^2 - 45x^3z^3 - 10x^2z^4 + 541xz^5 - 357z^6$ (dehomogenize, simplify)
$y^2 = 4x^5 + 5x^4 - 180x^3 - 40x^2 + 2164x - 1428$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-357, 541, -10, -45, 1, 1]), R([0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-357, 541, -10, -45, 1, 1], R![0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-1428, 2164, -40, -180, 5, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(249939\) \(=\) \( 3^{3} \cdot 9257 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-249939\) \(=\) \( - 3^{3} \cdot 9257 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(135960\) \(=\)  \( 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 103 \)
\( I_4 \)  \(=\) \(222901920\) \(=\)  \( 2^{5} \cdot 3^{2} \cdot 5 \cdot 19 \cdot 8147 \)
\( I_6 \)  \(=\) \(11622651537195\) \(=\)  \( 3^{2} \cdot 5 \cdot 258281145271 \)
\( I_{10} \)  \(=\) \(-999756\) \(=\)  \( - 2^{2} \cdot 3^{3} \cdot 9257 \)
\( J_2 \)  \(=\) \(67980\) \(=\)  \( 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 103 \)
\( J_4 \)  \(=\) \(155403030\) \(=\)  \( 2 \cdot 3 \cdot 5 \cdot 5180101 \)
\( J_6 \)  \(=\) \(137325968145\) \(=\)  \( 3^{2} \cdot 5 \cdot 2287 \cdot 1334363 \)
\( J_8 \)  \(=\) \(-3703670604670950\) \(=\)  \( - 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \cdot 307 \cdot 587 \cdot 2686547 \)
\( J_{10} \)  \(=\) \(-249939\) \(=\)  \( - 3^{3} \cdot 9257 \)
\( g_1 \)  \(=\) \(-53770247694745718400000/9257\)
\( g_2 \)  \(=\) \(-1808169747850400880000/9257\)
\( g_3 \)  \(=\) \(-23504511296278254000/9257\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (-21 : -882 : 4)\)
All points: \((1 : 0 : 0),\, (-21 : -882 : 4)\)
All points: \((1 : 0 : 0),\, (-21 : 0 : 4)\)

magma: [C![-21,-882,4],C![1,0,0]]; // minimal model
 
magma: [C![-21,0,4],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-21 : -882 : 4) - (1 : 0 : 0)\) \(4x + 21z\) \(=\) \(0,\) \(32y\) \(=\) \(-441z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\((-21 : -882 : 4) - (1 : 0 : 0)\) \(4x + 21z\) \(=\) \(0,\) \(32y\) \(=\) \(-441z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x + 21z\) \(=\) \(0,\) \(32y\) \(=\) \(x^2z - 882z^3\) \(0\) \(2\)

2-torsion field: 4.2.3999024.3

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(3\)
Regulator: \( 1 \)
Real period: \( 1.118838 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 4.475354 \)
Analytic order of Ш: \( 16 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(3\) \(3\) \(1\) \(1 - T\)
\(9257\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 102 T + 9257 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.30.3 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);