Properties

Label 249478.a.498956.1
Conductor $249478$
Discriminant $-498956$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + 1)y = 2x^5 + 5x^4 - 5x^2 + x$ (homogenize, simplify)
$y^2 + (x^2z + z^3)y = 2x^5z + 5x^4z^2 - 5x^2z^4 + xz^5$ (dehomogenize, simplify)
$y^2 = 8x^5 + 21x^4 - 18x^2 + 4x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, -5, 0, 5, 2]), R([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, -5, 0, 5, 2], R![1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 4, -18, 0, 21, 8]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(249478\) \(=\) \( 2 \cdot 124739 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-498956\) \(=\) \( - 2^{2} \cdot 124739 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1832\) \(=\)  \( 2^{3} \cdot 229 \)
\( I_4 \)  \(=\) \(33760\) \(=\)  \( 2^{5} \cdot 5 \cdot 211 \)
\( I_6 \)  \(=\) \(22104779\) \(=\)  \( 197 \cdot 112207 \)
\( I_{10} \)  \(=\) \(-1995824\) \(=\)  \( - 2^{4} \cdot 124739 \)
\( J_2 \)  \(=\) \(916\) \(=\)  \( 2^{2} \cdot 229 \)
\( J_4 \)  \(=\) \(29334\) \(=\)  \( 2 \cdot 3 \cdot 4889 \)
\( J_6 \)  \(=\) \(754697\) \(=\)  \( 397 \cdot 1901 \)
\( J_8 \)  \(=\) \(-42295276\) \(=\)  \( - 2^{2} \cdot 10573819 \)
\( J_{10} \)  \(=\) \(-498956\) \(=\)  \( - 2^{2} \cdot 124739 \)
\( g_1 \)  \(=\) \(-161219428390144/124739\)
\( g_2 \)  \(=\) \(-5636346933216/124739\)
\( g_3 \)  \(=\) \(-158308261508/124739\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 1 : 1)\) \((-2 : -2 : 1)\) \((1 : -3 : 1)\)
\((-2 : -3 : 1)\) \((1 : -4 : 2)\) \((1 : -6 : 2)\) \((2 : 9 : 1)\) \((-3 : -12 : 2)\) \((2 : -14 : 1)\)
\((-3 : -14 : 2)\) \((9 : 522 : 2)\) \((9 : -692 : 2)\)
Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 1 : 1)\) \((-2 : -2 : 1)\) \((1 : -3 : 1)\)
\((-2 : -3 : 1)\) \((1 : -4 : 2)\) \((1 : -6 : 2)\) \((2 : 9 : 1)\) \((-3 : -12 : 2)\) \((2 : -14 : 1)\)
\((-3 : -14 : 2)\) \((9 : 522 : 2)\) \((9 : -692 : 2)\)
Known points
\((1 : 0 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-2 : -1 : 1)\) \((-2 : 1 : 1)\) \((1 : -2 : 2)\)
\((1 : 2 : 2)\) \((-3 : -2 : 2)\) \((-3 : 2 : 2)\) \((1 : -4 : 1)\) \((1 : 4 : 1)\) \((2 : -23 : 1)\)
\((2 : 23 : 1)\) \((9 : -1214 : 2)\) \((9 : 1214 : 2)\)

magma: [C![-3,-14,2],C![-3,-12,2],C![-2,-3,1],C![-2,-2,1],C![0,-1,1],C![0,0,1],C![1,-6,2],C![1,-4,2],C![1,-3,1],C![1,0,0],C![1,1,1],C![2,-14,1],C![2,9,1],C![9,-692,2],C![9,522,2]]; // minimal model
 
magma: [C![-3,-2,2],C![-3,2,2],C![-2,-1,1],C![-2,1,1],C![0,-1,1],C![0,1,1],C![1,-2,2],C![1,2,2],C![1,-4,1],C![1,0,0],C![1,4,1],C![2,-23,1],C![2,23,1],C![9,-1214,2],C![9,1214,2]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -6 : 2) - (1 : 0 : 0)\) \(2x - z\) \(=\) \(0,\) \(4y\) \(=\) \(-3z^3\) \(0.788464\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.362335\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 - z^3\) \(0.268875\) \(\infty\)
Generator $D_0$ Height Order
\((1 : -6 : 2) - (1 : 0 : 0)\) \(2x - z\) \(=\) \(0,\) \(4y\) \(=\) \(-3z^3\) \(0.788464\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.362335\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 - z^3\) \(0.268875\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(2x - z\) \(=\) \(0,\) \(4y\) \(=\) \(x^2z - 5z^3\) \(0.788464\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(x^2z - z^3\) \(0.362335\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + 2xz^2 - z^3\) \(0.268875\) \(\infty\)

2-torsion field: 5.3.498956.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.066971 \)
Real period: \( 12.89921 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.727764 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 2 T^{2} )\)
\(124739\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 225 T + 124739 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);