Properties

Label 24320.b.243200.1
Conductor $24320$
Discriminant $243200$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = 2x^5 + 3x^4 + x^3$ (homogenize, simplify)
$y^2 + z^3y = 2x^5z + 3x^4z^2 + x^3z^3$ (dehomogenize, simplify)
$y^2 = 8x^5 + 12x^4 + 4x^3 + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, 0, 1, 3, 2]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, 0, 1, 3, 2], R![1]);
 
sage: X = HyperellipticCurve(R([1, 0, 0, 4, 12, 8]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(24320\) \(=\) \( 2^{8} \cdot 5 \cdot 19 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(243200\) \(=\) \( 2^{9} \cdot 5^{2} \cdot 19 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(6\) \(=\)  \( 2 \cdot 3 \)
\( I_4 \)  \(=\) \(54\) \(=\)  \( 2 \cdot 3^{3} \)
\( I_6 \)  \(=\) \(-792\) \(=\)  \( - 2^{3} \cdot 3^{2} \cdot 11 \)
\( I_{10} \)  \(=\) \(950\) \(=\)  \( 2 \cdot 5^{2} \cdot 19 \)
\( J_2 \)  \(=\) \(12\) \(=\)  \( 2^{2} \cdot 3 \)
\( J_4 \)  \(=\) \(-138\) \(=\)  \( - 2 \cdot 3 \cdot 23 \)
\( J_6 \)  \(=\) \(6116\) \(=\)  \( 2^{2} \cdot 11 \cdot 139 \)
\( J_8 \)  \(=\) \(13587\) \(=\)  \( 3 \cdot 7 \cdot 647 \)
\( J_{10} \)  \(=\) \(243200\) \(=\)  \( 2^{9} \cdot 5^{2} \cdot 19 \)
\( g_1 \)  \(=\) \(486/475\)
\( g_2 \)  \(=\) \(-1863/1900\)
\( g_3 \)  \(=\) \(13761/3800\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 0 : 2)\)
\((1 : 2 : 1)\) \((1 : -3 : 1)\) \((-1 : -8 : 2)\) \((3 : 27 : 1)\) \((3 : -28 : 1)\) \((20 : 2624 : 1)\)
\((20 : -2625 : 1)\)
Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 0 : 2)\)
\((1 : 2 : 1)\) \((1 : -3 : 1)\) \((-1 : -8 : 2)\) \((3 : 27 : 1)\) \((3 : -28 : 1)\) \((20 : 2624 : 1)\)
\((20 : -2625 : 1)\)
Known points
\((1 : 0 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((1 : -5 : 1)\)
\((1 : 5 : 1)\) \((-1 : -8 : 2)\) \((-1 : 8 : 2)\) \((3 : -55 : 1)\) \((3 : 55 : 1)\) \((20 : -5249 : 1)\)
\((20 : 5249 : 1)\)

magma: [C![-1,-8,2],C![-1,-1,1],C![-1,0,1],C![-1,0,2],C![0,-1,1],C![0,0,1],C![1,-3,1],C![1,0,0],C![1,2,1],C![3,-28,1],C![3,27,1],C![20,-2625,1],C![20,2624,1]]; // minimal model
 
magma: [C![-1,-8,2],C![-1,-1,1],C![-1,1,1],C![-1,8,2],C![0,-1,1],C![0,1,1],C![1,-5,1],C![1,0,0],C![1,5,1],C![3,-55,1],C![3,55,1],C![20,-5249,1],C![20,5249,1]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : -1 : 1) + (0 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.421492\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.121889\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(2x^2 + 2xz + z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\((-1 : -1 : 1) + (0 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.421492\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.121889\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(2x^2 + 2xz + z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\((-1 : -1 : 1) + (0 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.421492\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.121889\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(2x^2 + 2xz + z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-z^3\) \(0\) \(2\)

2-torsion field: 6.0.369664.2

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(3\)
Regulator: \( 0.047868 \)
Real period: \( 12.98001 \)
Tamagawa product: \( 4 \)
Torsion order:\( 2 \)
Leading coefficient: \( 0.621329 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(8\) \(9\) \(2\) \(1 + 2 T + 2 T^{2}\)
\(5\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 + 4 T + 5 T^{2} )\)
\(19\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 6 T + 19 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.60.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);