Properties

Label 23289.a.489069.1
Conductor $23289$
Discriminant $489069$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = 3x^5 - 7x^4 + 6x^3 - 2x^2$ (homogenize, simplify)
$y^2 + z^3y = 3x^5z - 7x^4z^2 + 6x^3z^3 - 2x^2z^4$ (dehomogenize, simplify)
$y^2 = 12x^5 - 28x^4 + 24x^3 - 8x^2 + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -2, 6, -7, 3]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -2, 6, -7, 3], R![1]);
 
sage: X = HyperellipticCurve(R([1, 0, -8, 24, -28, 12]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(23289\) \(=\) \( 3 \cdot 7 \cdot 1109 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(489069\) \(=\) \( 3^{2} \cdot 7^{2} \cdot 1109 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(32\) \(=\)  \( 2^{5} \)
\( I_4 \)  \(=\) \(1984\) \(=\)  \( 2^{6} \cdot 31 \)
\( I_6 \)  \(=\) \(59968\) \(=\)  \( 2^{6} \cdot 937 \)
\( I_{10} \)  \(=\) \(-1956276\) \(=\)  \( - 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 1109 \)
\( J_2 \)  \(=\) \(16\) \(=\)  \( 2^{4} \)
\( J_4 \)  \(=\) \(-320\) \(=\)  \( - 2^{6} \cdot 5 \)
\( J_6 \)  \(=\) \(-5184\) \(=\)  \( - 2^{6} \cdot 3^{4} \)
\( J_8 \)  \(=\) \(-46336\) \(=\)  \( - 2^{8} \cdot 181 \)
\( J_{10} \)  \(=\) \(-489069\) \(=\)  \( - 3^{2} \cdot 7^{2} \cdot 1109 \)
\( g_1 \)  \(=\) \(-1048576/489069\)
\( g_2 \)  \(=\) \(1310720/489069\)
\( g_3 \)  \(=\) \(147456/54341\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((1 : -1 : 1)\) \((2 : -3 : 3)\)
\((3 : 17 : 1)\) \((3 : -18 : 1)\) \((2 : -24 : 3)\) \((-1 : -30 : 4)\) \((-1 : -34 : 4)\) \((5 : 75 : 1)\)
\((5 : -76 : 1)\)
Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((1 : -1 : 1)\) \((2 : -3 : 3)\)
\((3 : 17 : 1)\) \((3 : -18 : 1)\) \((2 : -24 : 3)\) \((-1 : -30 : 4)\) \((-1 : -34 : 4)\) \((5 : 75 : 1)\)
\((5 : -76 : 1)\)
Known points
\((1 : 0 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : -1 : 1)\) \((1 : 1 : 1)\) \((-1 : -4 : 4)\)
\((-1 : 4 : 4)\) \((2 : -21 : 3)\) \((2 : 21 : 3)\) \((3 : -35 : 1)\) \((3 : 35 : 1)\) \((5 : -151 : 1)\)
\((5 : 151 : 1)\)

magma: [C![-1,-34,4],C![-1,-30,4],C![0,-1,1],C![0,0,1],C![1,-1,1],C![1,0,0],C![1,0,1],C![2,-24,3],C![2,-3,3],C![3,-18,1],C![3,17,1],C![5,-76,1],C![5,75,1]]; // minimal model
 
magma: [C![-1,-4,4],C![-1,4,4],C![0,-1,1],C![0,1,1],C![1,-1,1],C![1,0,0],C![1,1,1],C![2,-21,3],C![2,21,3],C![3,-35,1],C![3,35,1],C![5,-151,1],C![5,151,1]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : 0 : 1) + (2 : -3 : 3) - 2 \cdot(1 : 0 : 0)\) \((x - z) (3x - 2z)\) \(=\) \(0,\) \(3y\) \(=\) \(xz^2 - z^3\) \(0.140331\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0.087533\) \(\infty\)
Generator $D_0$ Height Order
\((1 : 0 : 1) + (2 : -3 : 3) - 2 \cdot(1 : 0 : 0)\) \((x - z) (3x - 2z)\) \(=\) \(0,\) \(3y\) \(=\) \(xz^2 - z^3\) \(0.140331\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0.087533\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \((x - z) (3x - 2z)\) \(=\) \(0,\) \(3y\) \(=\) \(2xz^2 - z^3\) \(0.140331\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 - z^3\) \(0.087533\) \(\infty\)

2-torsion field: 5.1.17744.3

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.012241 \)
Real period: \( 11.70305 \)
Tamagawa product: \( 4 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.573028 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 2 T + 3 T^{2} )\)
\(7\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 + T + 7 T^{2} )\)
\(1109\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 4 T + 1109 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);