Properties

Label 23120.a.92480.1
Conductor $23120$
Discriminant $92480$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x)y = -4x^4 + 15x^2 - 20$ (homogenize, simplify)
$y^2 + (x^3 + xz^2)y = -4x^4z^2 + 15x^2z^4 - 20z^6$ (dehomogenize, simplify)
$y^2 = x^6 - 14x^4 + 61x^2 - 80$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-20, 0, 15, 0, -4]), R([0, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-20, 0, 15, 0, -4], R![0, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([-80, 0, 61, 0, -14, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(23120\) \(=\) \( 2^{4} \cdot 5 \cdot 17^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(92480\) \(=\) \( 2^{6} \cdot 5 \cdot 17^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(8216\) \(=\)  \( 2^{3} \cdot 13 \cdot 79 \)
\( I_4 \)  \(=\) \(17752\) \(=\)  \( 2^{3} \cdot 7 \cdot 317 \)
\( I_6 \)  \(=\) \(48220124\) \(=\)  \( 2^{2} \cdot 12055031 \)
\( I_{10} \)  \(=\) \(369920\) \(=\)  \( 2^{8} \cdot 5 \cdot 17^{2} \)
\( J_2 \)  \(=\) \(4108\) \(=\)  \( 2^{2} \cdot 13 \cdot 79 \)
\( J_4 \)  \(=\) \(700194\) \(=\)  \( 2 \cdot 3 \cdot 11 \cdot 103^{2} \)
\( J_6 \)  \(=\) \(158493440\) \(=\)  \( 2^{8} \cdot 5 \cdot 7^{3} \cdot 19^{2} \)
\( J_8 \)  \(=\) \(40204853471\) \(=\)  \( 2437 \cdot 16497683 \)
\( J_{10} \)  \(=\) \(92480\) \(=\)  \( 2^{6} \cdot 5 \cdot 17^{2} \)
\( g_1 \)  \(=\) \(18279832024862512/1445\)
\( g_2 \)  \(=\) \(758454820196502/1445\)
\( g_3 \)  \(=\) \(8358381373888/289\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-2 : 4 : 1)\) \((2 : -4 : 1)\) \((-2 : 6 : 1)\) \((2 : -6 : 1)\)
\((-3 : 11 : 1)\) \((3 : -11 : 1)\) \((-3 : 19 : 1)\) \((3 : -19 : 1)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-2 : 4 : 1)\) \((2 : -4 : 1)\) \((-2 : 6 : 1)\) \((2 : -6 : 1)\)
\((-3 : 11 : 1)\) \((3 : -11 : 1)\) \((-3 : 19 : 1)\) \((3 : -19 : 1)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-2 : -2 : 1)\) \((-2 : 2 : 1)\) \((2 : -2 : 1)\) \((2 : 2 : 1)\)
\((-3 : -8 : 1)\) \((-3 : 8 : 1)\) \((3 : -8 : 1)\) \((3 : 8 : 1)\)

magma: [C![-3,11,1],C![-3,19,1],C![-2,4,1],C![-2,6,1],C![1,-1,0],C![1,0,0],C![2,-6,1],C![2,-4,1],C![3,-19,1],C![3,-11,1]]; // minimal model
 
magma: [C![-3,-8,1],C![-3,8,1],C![-2,-2,1],C![-2,2,1],C![1,-1,0],C![1,1,0],C![2,-2,1],C![2,2,1],C![3,-8,1],C![3,8,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-2 : 4 : 1) - (1 : 0 : 0)\) \(z (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - 4z^3\) \(0.463015\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.410269\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 - 5z^2\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2\) \(0\) \(2\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + xz - 4z^2\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 + 2z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\((-2 : 4 : 1) - (1 : 0 : 0)\) \(z (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - 4z^3\) \(0.463015\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.410269\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 - 5z^2\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2\) \(0\) \(2\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + xz - 4z^2\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 + 2z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\((-2 : -2 : 1) - (1 : 1 : 0)\) \(z (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + xz^2 - 8z^3\) \(0.463015\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2\) \(0.410269\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 - 5z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 5xz^2\) \(0\) \(2\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 + xz - 4z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 5xz^2 + 4z^3\) \(0\) \(2\)

2-torsion field: \(\Q(\sqrt{5}, \sqrt{17})\)

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(4\)
Regulator: \( 0.189961 \)
Real period: \( 15.70751 \)
Tamagawa product: \( 4 \)
Torsion order:\( 4 \)
Leading coefficient: \( 0.745954 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(6\) \(4\) \(1 + T\)
\(5\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 2 T + 5 T^{2} )\)
\(17\) \(2\) \(2\) \(1\) \(( 1 - T )^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.180.7 yes
\(3\) 3.90.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 170.b
  Elliptic curve isogeny class 136.a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);