Properties

Label 2304.a.13824.2
Conductor $2304$
Discriminant $-13824$
Mordell-Weil group \(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2 + x + 1)y = x^4 + x^3 + 3x^2 + x + 2$ (homogenize, simplify)
$y^2 + (x^3 + x^2z + xz^2 + z^3)y = x^4z^2 + x^3z^3 + 3x^2z^4 + xz^5 + 2z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^5 + 7x^4 + 8x^3 + 15x^2 + 6x + 9$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2, 1, 3, 1, 1]), R([1, 1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2, 1, 3, 1, 1], R![1, 1, 1, 1]);
 
sage: X = HyperellipticCurve(R([9, 6, 15, 8, 7, 2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(2304\) \(=\) \( 2^{8} \cdot 3^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-13824\) \(=\) \( - 2^{9} \cdot 3^{3} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(186\) \(=\)  \( 2 \cdot 3 \cdot 31 \)
\( I_4 \)  \(=\) \(54\) \(=\)  \( 2 \cdot 3^{3} \)
\( I_6 \)  \(=\) \(2664\) \(=\)  \( 2^{3} \cdot 3^{2} \cdot 37 \)
\( I_{10} \)  \(=\) \(54\) \(=\)  \( 2 \cdot 3^{3} \)
\( J_2 \)  \(=\) \(372\) \(=\)  \( 2^{2} \cdot 3 \cdot 31 \)
\( J_4 \)  \(=\) \(5622\) \(=\)  \( 2 \cdot 3 \cdot 937 \)
\( J_6 \)  \(=\) \(115100\) \(=\)  \( 2^{2} \cdot 5^{2} \cdot 1151 \)
\( J_8 \)  \(=\) \(2802579\) \(=\)  \( 3 \cdot 13 \cdot 71861 \)
\( J_{10} \)  \(=\) \(13824\) \(=\)  \( 2^{9} \cdot 3^{3} \)
\( g_1 \)  \(=\) \(515324718\)
\( g_2 \)  \(=\) \(83742501/4\)
\( g_3 \)  \(=\) \(27652775/24\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (0 : 1 : 1),\, (0 : -2 : 1),\, (-1 : -2 : 1),\, (-1 : 2 : 1)\)
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (0 : 1 : 1),\, (0 : -2 : 1),\, (-1 : -2 : 1),\, (-1 : 2 : 1)\)
All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (0 : -3 : 1),\, (0 : 3 : 1),\, (-1 : -4 : 1),\, (-1 : 4 : 1)\)

magma: [C![-1,-2,1],C![-1,2,1],C![0,-2,1],C![0,1,1],C![1,-1,0],C![1,0,0]]; // minimal model
 
magma: [C![-1,-4,1],C![-1,4,1],C![0,-3,1],C![0,3,1],C![1,-1,0],C![1,1,0]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.099203\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + 3z^2\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 + z^3\) \(0\) \(2\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.099203\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + 3z^2\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 + z^3\) \(0\) \(2\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + xz^2 + z^3\) \(0.099203\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 + 3z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + 3xz^2 + 3z^3\) \(0\) \(2\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + xz^2 + z^3\) \(0\) \(2\)

2-torsion field: \(\Q(\zeta_{24})\)

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(3\)
Regulator: \( 0.099203 \)
Real period: \( 11.87246 \)
Tamagawa product: \( 4 \)
Torsion order:\( 4 \)
Leading coefficient: \( 0.294447 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(8\) \(9\) \(2\) \(1 + 2 T + 2 T^{2}\)
\(3\) \(2\) \(3\) \(2\) \(1 + 2 T + 3 T^{2}\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.90.6 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);