Properties

Label 2295.a.11475.1
Conductor $2295$
Discriminant $-11475$
Mordell-Weil group \(\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + 1)y = 5x^5 - 2x^4 + x^3 - x$ (homogenize, simplify)
$y^2 + (x^2z + z^3)y = 5x^5z - 2x^4z^2 + x^3z^3 - xz^5$ (dehomogenize, simplify)
$y^2 = 20x^5 - 7x^4 + 4x^3 + 2x^2 - 4x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 0, 1, -2, 5]), R([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 0, 1, -2, 5], R![1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, -4, 2, 4, -7, 20]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(2295\) \(=\) \( 3^{3} \cdot 5 \cdot 17 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-11475\) \(=\) \( - 3^{3} \cdot 5^{2} \cdot 17 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(720\) \(=\)  \( 2^{4} \cdot 3^{2} \cdot 5 \)
\( I_4 \)  \(=\) \(-13932\) \(=\)  \( - 2^{2} \cdot 3^{4} \cdot 43 \)
\( I_6 \)  \(=\) \(-1117575\) \(=\)  \( - 3^{2} \cdot 5^{2} \cdot 4967 \)
\( I_{10} \)  \(=\) \(45900\) \(=\)  \( 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 17 \)
\( J_2 \)  \(=\) \(360\) \(=\)  \( 2^{3} \cdot 3^{2} \cdot 5 \)
\( J_4 \)  \(=\) \(7722\) \(=\)  \( 2 \cdot 3^{3} \cdot 11 \cdot 13 \)
\( J_6 \)  \(=\) \(-25\) \(=\)  \( - 5^{2} \)
\( J_8 \)  \(=\) \(-14909571\) \(=\)  \( - 3^{2} \cdot 677 \cdot 2447 \)
\( J_{10} \)  \(=\) \(11475\) \(=\)  \( 3^{3} \cdot 5^{2} \cdot 17 \)
\( g_1 \)  \(=\) \(8957952000/17\)
\( g_2 \)  \(=\) \(533744640/17\)
\( g_3 \)  \(=\) \(-4800/17\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (1 : 1 : 1),\, (1 : -3 : 1),\, (2 : -70 : 5),\, (2 : -75 : 5)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (1 : 1 : 1),\, (1 : -3 : 1),\, (2 : -70 : 5),\, (2 : -75 : 5)\)
All points: \((1 : 0 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (1 : -4 : 1),\, (1 : 4 : 1),\, (2 : -5 : 5),\, (2 : 5 : 5)\)

magma: [C![0,-1,1],C![0,0,1],C![1,-3,1],C![1,0,0],C![1,1,1],C![2,-75,5],C![2,-70,5]]; // minimal model
 
magma: [C![0,-1,1],C![0,1,1],C![1,-4,1],C![1,0,0],C![1,4,1],C![2,-5,5],C![2,5,5]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.038412\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x^2 + xz - z^2\) \(=\) \(0,\) \(8y\) \(=\) \(xz^2 - 5z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.038412\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x^2 + xz - z^2\) \(=\) \(0,\) \(8y\) \(=\) \(xz^2 - 5z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(x^2z - z^3\) \(0.038412\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x^2 + xz - z^2\) \(=\) \(0,\) \(8y\) \(=\) \(x^2z + 2xz^2 - 9z^3\) \(0\) \(2\)

2-torsion field: 6.2.57305232.5

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(2\)
Regulator: \( 0.038412 \)
Real period: \( 18.12875 \)
Tamagawa product: \( 2 \)
Torsion order:\( 2 \)
Leading coefficient: \( 0.348181 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(3\) \(3\) \(1\) \(1 + 2 T + 3 T^{2}\)
\(5\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 2 T + 5 T^{2} )\)
\(17\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 4 T + 17 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.60.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);