Properties

Label 22800.c.22800.1
Conductor $22800$
Discriminant $-22800$
Mordell-Weil group \(\Z \oplus \Z/{2}\Z \oplus \Z/{4}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + 1)y = -15x^6 - 53x^4 - 62x^2 - 24$ (homogenize, simplify)
$y^2 + (x^2z + z^3)y = -15x^6 - 53x^4z^2 - 62x^2z^4 - 24z^6$ (dehomogenize, simplify)
$y^2 = -60x^6 - 211x^4 - 246x^2 - 95$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-24, 0, -62, 0, -53, 0, -15]), R([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-24, 0, -62, 0, -53, 0, -15], R![1, 0, 1]);
 
sage: X = HyperellipticCurve(R([-95, 0, -246, 0, -211, 0, -60]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(22800\) \(=\) \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-22800\) \(=\) \( - 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(549624\) \(=\)  \( 2^{3} \cdot 3 \cdot 22901 \)
\( I_4 \)  \(=\) \(367224\) \(=\)  \( 2^{3} \cdot 3 \cdot 11 \cdot 13 \cdot 107 \)
\( I_6 \)  \(=\) \(67205838156\) \(=\)  \( 2^{2} \cdot 3 \cdot 127 \cdot 44098319 \)
\( I_{10} \)  \(=\) \(91200\) \(=\)  \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \)
\( J_2 \)  \(=\) \(274812\) \(=\)  \( 2^{2} \cdot 3 \cdot 22901 \)
\( J_4 \)  \(=\) \(3146673602\) \(=\)  \( 2 \cdot 1573336801 \)
\( J_6 \)  \(=\) \(48039453988800\) \(=\)  \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \cdot 911 \cdot 578209 \)
\( J_8 \)  \(=\) \(825065918011612799\) \(=\)  \( 825065918011612799 \)
\( J_{10} \)  \(=\) \(22800\) \(=\)  \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \)
\( g_1 \)  \(=\) \(32654063023160087767973184/475\)
\( g_2 \)  \(=\) \(1360559495897959521276072/475\)
\( g_3 \)  \(=\) \(159123602029255257024\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\R$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{2}\Z \oplus \Z/{4}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(61x^2 + 45z^2\) \(=\) \(0,\) \(183y\) \(=\) \(220xz^2 - 24z^3\) \(8.014590\) \(\infty\)
\(D_0 - D_\infty\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\(D_0 - D_\infty\) \(5x^2 + 6z^2\) \(=\) \(0,\) \(5y\) \(=\) \(z^3\) \(0\) \(4\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(61x^2 + 45z^2\) \(=\) \(0,\) \(183y\) \(=\) \(220xz^2 - 24z^3\) \(8.014590\) \(\infty\)
\(D_0 - D_\infty\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\(D_0 - D_\infty\) \(5x^2 + 6z^2\) \(=\) \(0,\) \(5y\) \(=\) \(z^3\) \(0\) \(4\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(61x^2 + 45z^2\) \(=\) \(0,\) \(183y\) \(=\) \(x^2z + 440xz^2 - 47z^3\) \(8.014590\) \(\infty\)
\(D_0 - D_\infty\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + z^3\) \(0\) \(2\)
\(D_0 - D_\infty\) \(5x^2 + 6z^2\) \(=\) \(0,\) \(5y\) \(=\) \(x^2z + 3z^3\) \(0\) \(4\)

2-torsion field: 8.0.1688960160000.8

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(4\)
Regulator: \( 8.014590 \)
Real period: \( 3.986219 \)
Tamagawa product: \( 1 \)
Torsion order:\( 8 \)
Leading coefficient: \( 0.998372 \)
Analytic order of Ш: \( 2 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(4\) \(1\) \(1 + T + 2 T^{2}\)
\(3\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 3 T^{2} )\)
\(5\) \(2\) \(2\) \(1\) \(( 1 - T )^{2}\)
\(19\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 4 T + 19 T^{2} )\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.90.6 yes
\(3\) 3.90.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 15.a
  Elliptic curve isogeny class 1520.f

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);