Properties

Label 22131.a.199179.1
Conductor $22131$
Discriminant $-199179$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = 2x^6 - 4x^4 + x^2 - x$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = 2x^6 - 4x^4z^2 + x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = 9x^6 - 14x^4 + 2x^3 + 5x^2 - 2x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 1, 0, -4, 0, 2]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 1, 0, -4, 0, 2], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, -2, 5, 2, -14, 0, 9]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(22131\) \(=\) \( 3^{2} \cdot 2459 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-199179\) \(=\) \( - 3^{4} \cdot 2459 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(508\) \(=\)  \( 2^{2} \cdot 127 \)
\( I_4 \)  \(=\) \(73225\) \(=\)  \( 5^{2} \cdot 29 \cdot 101 \)
\( I_6 \)  \(=\) \(17430667\) \(=\)  \( 17430667 \)
\( I_{10} \)  \(=\) \(25494912\) \(=\)  \( 2^{7} \cdot 3^{4} \cdot 2459 \)
\( J_2 \)  \(=\) \(127\) \(=\)  \( 127 \)
\( J_4 \)  \(=\) \(-2379\) \(=\)  \( - 3 \cdot 13 \cdot 61 \)
\( J_6 \)  \(=\) \(-129717\) \(=\)  \( - 3^{2} \cdot 7 \cdot 29 \cdot 71 \)
\( J_8 \)  \(=\) \(-5533425\) \(=\)  \( - 3^{2} \cdot 5^{2} \cdot 24593 \)
\( J_{10} \)  \(=\) \(199179\) \(=\)  \( 3^{4} \cdot 2459 \)
\( g_1 \)  \(=\) \(33038369407/199179\)
\( g_2 \)  \(=\) \(-1624367719/66393\)
\( g_3 \)  \(=\) \(-232467277/22131\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 1 : 0)\) \((1 : -2 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((1 : -2 : 1)\) \((1 : -3 : 2)\) \((-2 : -5 : 1)\) \((1 : -10 : 2)\) \((-2 : 14 : 1)\)
\((4 : -233 : 9)\) \((4 : -884 : 9)\)
Known points
\((1 : 1 : 0)\) \((1 : -2 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((1 : -2 : 1)\) \((1 : -3 : 2)\) \((-2 : -5 : 1)\) \((1 : -10 : 2)\) \((-2 : 14 : 1)\)
\((4 : -233 : 9)\) \((4 : -884 : 9)\)
Known points
\((1 : -3 : 0)\) \((1 : 3 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((1 : 1 : 1)\) \((1 : -7 : 2)\) \((1 : 7 : 2)\) \((-2 : -19 : 1)\) \((-2 : 19 : 1)\)
\((4 : -651 : 9)\) \((4 : 651 : 9)\)

magma: [C![-2,-5,1],C![-2,14,1],C![-1,0,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-10,2],C![1,-3,2],C![1,-2,0],C![1,-2,1],C![1,-1,1],C![1,1,0],C![4,-884,9],C![4,-233,9]]; // minimal model
 
magma: [C![-2,-19,1],C![-2,19,1],C![-1,-1,1],C![-1,1,1],C![0,-1,1],C![0,1,1],C![1,-7,2],C![1,7,2],C![1,-3,0],C![1,-1,1],C![1,1,1],C![1,3,0],C![4,-651,9],C![4,651,9]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 0 : 1) + (1 : -2 : 1) - (1 : -2 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2\) \(0.097545\) \(\infty\)
\((1 : -1 : 1) - (1 : -2 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 2z^3\) \(0.066609\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 0 : 1) + (1 : -2 : 1) - (1 : -2 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2\) \(0.097545\) \(\infty\)
\((1 : -1 : 1) - (1 : -2 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 2z^3\) \(0.066609\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 1 : 1) + (1 : -1 : 1) - (1 : -3 : 0) - (1 : 3 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 3xz^2 + z^3\) \(0.097545\) \(\infty\)
\((1 : 1 : 1) - (1 : -3 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(3x^3 + xz^2 - 3z^3\) \(0.066609\) \(\infty\)

2-torsion field: 6.0.1416384.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.006174 \)
Real period: \( 18.61562 \)
Tamagawa product: \( 5 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.574735 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(2\) \(4\) \(5\) \(( 1 - T )( 1 + T )\)
\(2459\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 72 T + 2459 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);