Properties

Label 219961.a.219961.1
Conductor $219961$
Discriminant $219961$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $E_6$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{CM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = x^5 + 7x^4 + 9x^3 + 2x^2 - x$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = x^5z + 7x^4z^2 + 9x^3z^3 + 2x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = 4x^5 + 29x^4 + 38x^3 + 9x^2 - 4x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 2, 9, 7, 1]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 2, 9, 7, 1], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([0, -4, 9, 38, 29, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(219961\) \(=\) \( 7^{2} \cdot 67^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(219961\) \(=\) \( 7^{2} \cdot 67^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1924\) \(=\)  \( 2^{2} \cdot 13 \cdot 37 \)
\( I_4 \)  \(=\) \(197449\) \(=\)  \( 7 \cdot 67 \cdot 421 \)
\( I_6 \)  \(=\) \(97792597\) \(=\)  \( 7 \cdot 67 \cdot 208513 \)
\( I_{10} \)  \(=\) \(28155008\) \(=\)  \( 2^{7} \cdot 7^{2} \cdot 67^{2} \)
\( J_2 \)  \(=\) \(481\) \(=\)  \( 13 \cdot 37 \)
\( J_4 \)  \(=\) \(1413\) \(=\)  \( 3^{2} \cdot 157 \)
\( J_6 \)  \(=\) \(-1403\) \(=\)  \( - 23 \cdot 61 \)
\( J_8 \)  \(=\) \(-667853\) \(=\)  \( - 53 \cdot 12601 \)
\( J_{10} \)  \(=\) \(219961\) \(=\)  \( 7^{2} \cdot 67^{2} \)
\( g_1 \)  \(=\) \(25746925826401/219961\)
\( g_2 \)  \(=\) \(157245197733/219961\)
\( g_3 \)  \(=\) \(-324599483/219961\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_6$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1)\)

magma: [C![-1,0,1],C![0,0,1],C![1,0,0]]; // minimal model
 
magma: [C![-1,0,1],C![0,0,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2\) \(0\) \(2\)

2-torsion field: 3.3.219961.2

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 20.87449 \)
Tamagawa product: \( 1 \)
Torsion order:\( 4 \)
Leading coefficient: \( 1.304655 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(7\) \(2\) \(2\) \(1\) \(1 - 4 T + 7 T^{2}\)
\(67\) \(2\) \(2\) \(1\) \(1 - 16 T + 67 T^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.240.1 yes
\(3\) 3.480.12 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $E_6$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) 6.6.22691552673349.2 with defining polynomial:
  \(x^{6} - x^{5} - 195 x^{4} - 1520 x^{3} - 4500 x^{2} - 5328 x - 1728\)

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = \frac{7141655}{256} b^{5} - \frac{22730245}{256} b^{4} - \frac{1343060395}{256} b^{3} - \frac{3961727685}{128} b^{2} - \frac{1854139797}{32} b - \frac{175991481}{8}\)
  \(g_6 = \frac{1449313649}{128} b^{5} - \frac{9229533075}{256} b^{4} - \frac{545063305941}{256} b^{3} - \frac{3215488123953}{256} b^{2} - \frac{1505697092109}{64} b - \frac{143670105243}{16}\)
   Conductor norm: 1

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\C\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 6.6.22691552673349.2 with defining polynomial \(x^{6} - x^{5} - 195 x^{4} - 1520 x^{3} - 4500 x^{2} - 5328 x - 1728\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{469}) \) with generator \(\frac{1}{8} a^{5} - \frac{1}{2} a^{4} - \frac{91}{4} a^{3} - \frac{981}{8} a^{2} - \frac{855}{4} a - 90\) with minimal polynomial \(x^{2} - x - 117\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.3.219961.2 with generator \(-\frac{1}{9} a^{5} + \frac{4}{9} a^{4} + \frac{61}{3} a^{3} + \frac{971}{9} a^{2} + \frac{532}{3} a + 60\) with minimal polynomial \(x^{3} - x^{2} - 156 x - 608\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);