Properties

Label 2169.a.175689.1
Conductor $2169$
Discriminant $175689$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $N(\mathrm{SU}(2)\times\mathrm{SU}(2))$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = x^5 - 9x^4 + 22x^3 - 14x^2 - x$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = x^5z - 9x^4z^2 + 22x^3z^3 - 14x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = 4x^5 - 35x^4 + 90x^3 - 55x^2 - 4x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, -14, 22, -9, 1]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, -14, 22, -9, 1], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([0, -4, -55, 90, -35, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(2169\) \(=\) \( 3^{2} \cdot 241 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(175689\) \(=\) \( 3^{6} \cdot 241 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(2860\) \(=\)  \( 2^{2} \cdot 5 \cdot 11 \cdot 13 \)
\( I_4 \)  \(=\) \(62145\) \(=\)  \( 3^{2} \cdot 5 \cdot 1381 \)
\( I_6 \)  \(=\) \(64270095\) \(=\)  \( 3 \cdot 5 \cdot 349 \cdot 12277 \)
\( I_{10} \)  \(=\) \(92544\) \(=\)  \( 2^{7} \cdot 3 \cdot 241 \)
\( J_2 \)  \(=\) \(2145\) \(=\)  \( 3 \cdot 5 \cdot 11 \cdot 13 \)
\( J_4 \)  \(=\) \(168405\) \(=\)  \( 3 \cdot 5 \cdot 103 \cdot 109 \)
\( J_6 \)  \(=\) \(12629605\) \(=\)  \( 5 \cdot 47 \cdot 223 \cdot 241 \)
\( J_8 \)  \(=\) \(-317435325\) \(=\)  \( - 3 \cdot 5^{2} \cdot 41 \cdot 103231 \)
\( J_{10} \)  \(=\) \(175689\) \(=\)  \( 3^{6} \cdot 241 \)
\( g_1 \)  \(=\) \(186865965446875/723\)
\( g_2 \)  \(=\) \(20518794993125/2169\)
\( g_3 \)  \(=\) \(26790746125/81\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1),\, (4 : -10 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1),\, (4 : -10 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : 0 : 1),\, (4 : 0 : 1)\)

magma: [C![0,0,1],C![1,-1,1],C![1,0,0],C![4,-10,1]]; // minimal model
 
magma: [C![0,0,1],C![1,0,1],C![1,0,0],C![4,0,1]]; // simplified model
 

Number of rational Weierstrass points: \(4\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -1 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((0 : 0 : 1) + (4 : -10 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - 4z)\) \(=\) \(0,\) \(2y\) \(=\) \(-5xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\((1 : -1 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((0 : 0 : 1) + (4 : -10 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - 4z)\) \(=\) \(0,\) \(2y\) \(=\) \(-5xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\((1 : 0 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2 - 2z^3\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x (x - 4z)\) \(=\) \(0,\) \(2y\) \(=\) \(x^2z - 9xz^2\) \(0\) \(2\)

2-torsion field: \(\Q(\sqrt{241}) \)

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(3\)
Regulator: \( 1 \)
Real period: \( 10.18353 \)
Tamagawa product: \( 4 \)
Torsion order:\( 8 \)
Leading coefficient: \( 0.636470 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(2\) \(6\) \(4\) \(1 + 3 T^{2}\)
\(241\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 18 T + 241 T^{2} )\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.360.2 yes
\(3\) 3.90.2 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $N(\mathrm{SU}(2)\times\mathrm{SU}(2))$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) \(\Q(\sqrt{-3}) \) with defining polynomial:
  \(x^{2} - x + 1\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 2.0.3.1-241.1-a
  Elliptic curve isogeny class 2.0.3.1-241.2-a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{-3}) \) with defining polynomial \(x^{2} - x + 1\)

Of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\R \times \R\)

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);