Properties

Label 21609.a.453789.1
Conductor $21609$
Discriminant $-453789$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathsf{RM}\)
\(\End(J) \otimes \Q\) \(\mathsf{RM}\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -x^4 + 2x^2 - 3x + 2$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -x^4z^2 + 2x^2z^4 - 3xz^5 + 2z^6$ (dehomogenize, simplify)
$y^2 = x^6 - 4x^4 + 2x^3 + 8x^2 - 12x + 9$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2, -3, 2, 0, -1]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2, -3, 2, 0, -1], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([9, -12, 8, 2, -4, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(21609\) \(=\) \( 3^{2} \cdot 7^{4} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-453789\) \(=\) \( - 3^{3} \cdot 7^{5} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(116\) \(=\)  \( 2^{2} \cdot 29 \)
\( I_4 \)  \(=\) \(793\) \(=\)  \( 13 \cdot 61 \)
\( I_6 \)  \(=\) \(25821\) \(=\)  \( 3^{2} \cdot 19 \cdot 151 \)
\( I_{10} \)  \(=\) \(3456\) \(=\)  \( 2^{7} \cdot 3^{3} \)
\( J_2 \)  \(=\) \(203\) \(=\)  \( 7 \cdot 29 \)
\( J_4 \)  \(=\) \(98\) \(=\)  \( 2 \cdot 7^{2} \)
\( J_6 \)  \(=\) \(-12348\) \(=\)  \( - 2^{2} \cdot 3^{2} \cdot 7^{3} \)
\( J_8 \)  \(=\) \(-629062\) \(=\)  \( - 2 \cdot 7^{4} \cdot 131 \)
\( J_{10} \)  \(=\) \(453789\) \(=\)  \( 3^{3} \cdot 7^{5} \)
\( g_1 \)  \(=\) \(20511149/27\)
\( g_2 \)  \(=\) \(48778/27\)
\( g_3 \)  \(=\) \(-3364/3\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\) \((-2 : 0 : 1)\) \((0 : -2 : 1)\)
\((1 : -2 : 1)\) \((-2 : 7 : 1)\) \((3 : -7 : 2)\) \((3 : -28 : 2)\) \((-5 : -28 : 3)\) \((-5 : 126 : 3)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\) \((-2 : 0 : 1)\) \((0 : -2 : 1)\)
\((1 : -2 : 1)\) \((-2 : 7 : 1)\) \((3 : -7 : 2)\) \((3 : -28 : 2)\) \((-5 : -28 : 3)\) \((-5 : 126 : 3)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((1 : -2 : 1)\) \((1 : 2 : 1)\) \((0 : -3 : 1)\) \((0 : 3 : 1)\)
\((-2 : -7 : 1)\) \((-2 : 7 : 1)\) \((3 : -21 : 2)\) \((3 : 21 : 2)\) \((-5 : -154 : 3)\) \((-5 : 154 : 3)\)

magma: [C![-5,-28,3],C![-5,126,3],C![-2,0,1],C![-2,7,1],C![0,-2,1],C![0,1,1],C![1,-2,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![3,-28,2],C![3,-7,2]]; // minimal model
 
magma: [C![-5,-154,3],C![-5,154,3],C![-2,-7,1],C![-2,7,1],C![0,-3,1],C![0,3,1],C![1,-2,1],C![1,-1,0],C![1,1,0],C![1,2,1],C![3,-21,2],C![3,21,2]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.304655\) \(\infty\)
\((0 : -2 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - 2z^3\) \(0.152327\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.304655\) \(\infty\)
\((0 : -2 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - 2z^3\) \(0.152327\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + z^3\) \(0.304655\) \(\infty\)
\((0 : -3 : 1) - (1 : 1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - 3z^3\) \(0.152327\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + z^3\) \(0\) \(2\)

2-torsion field: 8.0.152473104.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(3\)
Regulator: \( 0.045400 \)
Real period: \( 13.61578 \)
Tamagawa product: \( 4 \)
Torsion order:\( 2 \)
Leading coefficient: \( 0.618161 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(2\) \(3\) \(2\) \(( 1 + T )^{2}\)
\(7\) \(4\) \(5\) \(2\) \(1\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.45.1 yes
\(3\) 3.72.2 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\sqrt{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{2}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);