Properties

Label 2154.a.465264.1
Conductor $2154$
Discriminant $465264$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{8}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = x^5 - 9x^3 - x^2 + 18x - 1$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = x^5z - 9x^3z^3 - x^2z^4 + 18xz^5 - z^6$ (dehomogenize, simplify)
$y^2 = 4x^5 + x^4 - 34x^3 - 3x^2 + 72x - 4$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, 18, -1, -9, 0, 1]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, 18, -1, -9, 0, 1], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([-4, 72, -3, -34, 1, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(2154\) \(=\) \( 2 \cdot 3 \cdot 359 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(465264\) \(=\) \( 2^{4} \cdot 3^{4} \cdot 359 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(9252\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 257 \)
\( I_4 \)  \(=\) \(1337505\) \(=\)  \( 3 \cdot 5 \cdot 13 \cdot 19^{3} \)
\( I_6 \)  \(=\) \(4613040945\) \(=\)  \( 3^{2} \cdot 5 \cdot 102512021 \)
\( I_{10} \)  \(=\) \(59553792\) \(=\)  \( 2^{11} \cdot 3^{4} \cdot 359 \)
\( J_2 \)  \(=\) \(2313\) \(=\)  \( 3^{2} \cdot 257 \)
\( J_4 \)  \(=\) \(167186\) \(=\)  \( 2 \cdot 179 \cdot 467 \)
\( J_6 \)  \(=\) \(380736\) \(=\)  \( 2^{6} \cdot 3^{2} \cdot 661 \)
\( J_8 \)  \(=\) \(-6767629057\) \(=\)  \( - 7 \cdot 19 \cdot 50884429 \)
\( J_{10} \)  \(=\) \(465264\) \(=\)  \( 2^{4} \cdot 3^{4} \cdot 359 \)
\( g_1 \)  \(=\) \(817321917038553/5744\)
\( g_2 \)  \(=\) \(12770614373841/2872\)
\( g_3 \)  \(=\) \(1571702004/359\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (-2 : -1 : 1),\, (1 : 2 : 1),\, (2 : -3 : 1),\, (1 : -4 : 1)\)
All points: \((1 : 0 : 0),\, (-2 : -1 : 1),\, (1 : 2 : 1),\, (2 : -3 : 1),\, (1 : -4 : 1)\)
All points: \((1 : 0 : 0),\, (-2 : 0 : 1),\, (2 : 0 : 1),\, (1 : -6 : 1),\, (1 : 6 : 1)\)

magma: [C![-2,-1,1],C![1,-4,1],C![1,0,0],C![1,2,1],C![2,-3,1]]; // minimal model
 
magma: [C![-2,0,1],C![1,-6,1],C![1,0,0],C![1,6,1],C![2,0,1]]; // simplified model
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{8}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-2 : -1 : 1) - (1 : 0 : 0)\) \(x + 2z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x^2 + xz - 17z^2\) \(=\) \(0,\) \(8y\) \(=\) \(-xz^2 - 19z^3\) \(0\) \(8\)
Generator $D_0$ Height Order
\((-2 : -1 : 1) - (1 : 0 : 0)\) \(x + 2z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x^2 + xz - 17z^2\) \(=\) \(0,\) \(8y\) \(=\) \(-xz^2 - 19z^3\) \(0\) \(8\)
Generator $D_0$ Height Order
\((-2 : 0 : 1) - (1 : 0 : 0)\) \(x + 2z\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2 - 2z^3\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x^2 + xz - 17z^2\) \(=\) \(0,\) \(8y\) \(=\) \(x^2z - xz^2 - 38z^3\) \(0\) \(8\)

2-torsion field: 3.3.1436.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 10.28779 \)
Tamagawa product: \( 16 \)
Torsion order:\( 16 \)
Leading coefficient: \( 0.642986 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(4\) \(4\) \(( 1 - T )( 1 + T + 2 T^{2} )\)
\(3\) \(1\) \(4\) \(4\) \(( 1 - T )( 1 + 3 T^{2} )\)
\(359\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 24 T + 359 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.120.3 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);